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Abstract

In this paper, we study the superconvergence of the error for the local discontinuous

Galerkin (LDG) finite element method for one-dimensional linear parabolic equations when

the alternating flux is used. We prove that if we apply piecewise k-th degree polynomials,

the error between the LDG solution and the exact solution is (k+2)-th order superconver-

gent at the Radau points with suitable initial discretization. Moreover, we also prove the

LDG solution is (k + 2)-th order superconvergent for the error to a particular projection

of the exact solution. Even though we only consider periodic boundary condition, this

boundary condition is not essential, since we do not use Fourier analysis. Our analysis

is valid for arbitrary regular meshes and for P
k polynomials with arbitrary k ≥ 1. We

perform numerical experiments to demonstrate that the superconvergence rates proved in

this paper are sharp.
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1. Introduction

In this paper, we apply local discontinuous Galerkin (LDG) method to one-dimensional

linear parabolic equation

ut = uxx, (x, t) ∈ [0, 2π]× [0, T ],

u(x, 0) = u0(x), x ∈ [0, 2π],
(1.1)

where the initial datum u0 is assumed to be sufficiently smooth. For simplicity, we will consider

periodic boundary condition u(0, t) = u(2π, t). However, this assumption is not essential since

the proof is not based on Fourier analysis. We use piecewise k-th degree polynomials to ap-

proximate the solution in each cell and prove that, under suitable initial discretization, the rate

of convergence for the error between the LDG solution and the exact solution is of (k + 2)-th

order at the Radau points. Moreover, we also prove the (k + 2)-th order superconvergence of

the error between the LDG solution and a particular type of projection of the exact solution

estimated in Lp-norm, for any 1 ≤ p ≤ ∞.
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The DG method was first introduced in 1973 by Reed and Hill [25], in the framework of

neutron linear transport. Later, the method was applied by Johnson and Pitkäranta to a scalar

linear hyperbolic equation and the Lp-norm error estimate was proved [23]. Subsequently, Cock-

burn et al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods for hyperbolic

conservation laws in a series of papers [16–19]. In [20], Cockburn and Shu first introduced the

LDG method to solve the convection-diffusion equation. Their idea was motivated by Bassi

and Rebay [8], where the compressible Navier-Stokes equations were successfully solved.

The superconvergence properties have been analyzed intensively. In [2, 5], Adjerid et al.

studied the ordinary differential equations and proved the (k+2)-th order superconvergence of

the DG solutions at the downwind-biased Radau points. For hyperbolic equations, the super-

convergence results have been investigated by several authors [6,7,9,10,12,24,26,27]. Especially,

in [26], we obtained sharp superconvergence for linear hyperbolic equations by using the dual

argument, and this gives us the motivation to the prove the sharp superconvergence for linear

parabolic equations. For convection-diffusion problems, in [3,4], the authors used numerical ex-

periments to demonstrate the superconvergence of LDG solution at the Radau points. In [11],

the steady state solution was studied and the superconvergence of the numerical fluxes was

proved. In [13], Cheng and Shu discussed the superconvergence property of the LDG scheme

for heat equation by using piecewise linear approximations and uniform meshes. Subsequently,

they proved the (k+ 3
2
)-th order superconvergence when using piecewise k-th degree polynomi-

als with arbitrary k on arbitrary regular meshes in [14]. However, the convergence rate obtained

in [14] is not sharp. Numerical tests demonstrated that the error of the DG solution towards

a particular projection of the exact solution is (k + 2)-th order accurate, even on highly non-

uniform meshes. In [14], the framework to prove the superconvergence results does not rely on

Fourier analysis. Recently, in [9, 10], the authors studied the sharp superconvergence of linear

hyperbolic and parabolic equations. In this paper, we give another proof for the estimate of

the error between the exact and numerical solutions at the Radau points for linear parabolic

equations. Motivated by [26], we adopt the dual argument to obtain the sharp rate of super-

convergence and improve upon the result in [14]. The proof works for arbitrary regular meshes

and schemes of any order.

The organization of this paper is as follows. In Section 2, we introduce the LDG scheme and

state the main theorem. In Section 3, we present some preliminaries, including the norms we

use throughout the paper, Radau polynomials, some essential properties of the finite element

spaces, LDG spatial discretization as well as the error equations. Section 4 is the main body of

the paper where the main theorem is proved. Numerical evidences about the sharpness of the

superconvergence estimates are given in Section 5. In Section 6, we present some concluding

remarks and remarks on future work. Finally, the initial discretization and properties about

the test functions are given in Appendices A and B, respectively.

2. LDG scheme and the main result

In this section, we construct the LDG scheme for the linear parabolic equation (1.1). First,

we divide the computational domain Ω = [0, 2π] into N cells
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