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Abstract

This paper develops a new method to analyze convergence of the iterated defect correc-

tion scheme of finite element methods on rectangular grids in both two and three dimen-

sions. The main idea is to formulate energy inner products and energy (semi)norms into

matrix forms. Then, two constants of two key inequalities involved are min and max eigen-

values of two associated generalized eigenvalue problems, respectively. Local versions on

the element level of these two generalized eigenvalue problems are exactly solved to obtain

sharp (lower) upper bounds of these two constants. This and some essential observations

for iterated solutions establish convergence in 2D and the monotone decreasing property in

3D. For two dimensions the results herein improve those in literature; for three dimensions

the results herein are new. Numerical results are presented to examine theoretical results.
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1. Introduction

Let Ω be a polygonal domain in R
d, d = 2, 3 with boundary Γ := ∂Ω. We consider the

iterated defection correction scheme of finite element methods proposed in [7] for the following

second order elliptic equation
{

−∆u = f in Ω,

u = 0 on Γ,
(1.1)

where f ∈ L2(Ω).

For a measurable set G ⊂ Ω, let (·, ·)L2(G) and || · ||L2(G) denote the inner product and

the norm in L2(G), and if G = Ω, we drop the index L2(Ω) for simplicity. Then the weak

formulation of the problem (1.1) reads: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) for any v ∈ H1
0 (Ω) (1.2)

with a(u, v) :=
∫

Ω
∇u · ∇vdx, where the symbol · is the inner product in the Euclidean space

R
d, d = 2, 3.

To consider the iterated defection correction scheme of finite element methods proposed in

[7], let Mh be a shape regular triangulation of Ω into rectangles and Th be the Green refinement

of Mh: for two dimensions, each element in Mh is refined into four congruence rectangles; for

three dimensions, each element in Mh is refined into eight congruence rectangles. Throughout
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this paper, h := max
M∈Mh

hM where hM denotes the diameter of element M . Given ω ⊂ Ω and

integer k ≥ 0, let Qk(ω) denote the space of polynomials of degree ≤ k in each variable over

ω. The conforming bilinear/trilinear finite element space over Th and biquadratic/tri-quadratic

finite element space over Mh are defined as, respectively,

V1,h :=
{

v ∈ H1
0 (Ω), v|K ∈ Q1(T ) for any T ∈ Th

}

,

V2,h :=
{

v ∈ H1
0 (Ω), v|K ∈ Q2(M) for any M ∈ Mh

}

.

Given any v ∈ H1
0 (Ω) ∩ C(Ω̄), define the interpolation Πiv ∈ Vi,h, i = 1, 2, by

(Πiv)(P) = v(P) for any vertex P of Th.

The Petrov-Galerkin method reads: Find Uh ∈ V2,h such that

a(Uh, vh) = (f, vh) for any vh ∈ V1,h. (1.3)

Given some approximation ui,h ∈ V1,h to the solution u of (1.1), the iterated defect correction

scheme is: Find ui+1,h ∈ V1,h such that

a(ui+1,h, vh) = a(ui,h, vh)− (a(Π2ui,h, vh)− (f, vh))

for any vh ∈ V1,h, i = 0, 1, · · · , (1.4)

Usually, the initial approximation u0,h of algorithm (1.4) can be taken as the solution of the

following discrete problem: Find u0,h ∈ V1,h such that

a(u0,h, vh) = (f, vh) for any vh ∈ V1,h. (1.5)

Concerning algorithm (1.4), one problem is whether problem (1.3) is well-posed while another

problem is whether iterated solutions ui,h converges to the solution Uh of problem (1.3) in the

following sense:

lim
i→∞

‖∇(Uh −Π2ui,h)‖ = 0. (1.6)

For uniform meshes in two dimensions, such convergence was analyzed in [3, 14, 15, 17] based

on superconvergence of finite element solutions. For more general triangular meshes, the well-

posedness of problem (1.3) and convergence (1.6) were analyzed in [8], the essential ingredient

is the so-called “contractivity” properties of the interpolation operator Π1 and Π2, namely,

‖∇(Π2v − v)‖L2(M) ≤ q1‖∇v‖L2(M) for any v ∈ V1,h,M ∈ Mh,

‖∇(Π1v − v)‖L2(M) ≤ q2‖∇v‖L2(M) for any v ∈ V2,h,M ∈ Mh,

for some positive constants qi < 1, i = 1, 2. For rectangular meshes in two dimensions, such

“contractivity” properties were proved in [20]. However, such properties do not hold for rect-

angular meshes in three dimensions, see [20]. Hence, the analysis of the well-posedness of

problem (1.3) and convergence of algorithm (1.4) on rectangles in three dimensions is missing

in literature so far.

The purpose of the paper is to develop a new framework to analyze the well-posedness

of problem (1.3) and the convergence in 2D and the monotone decreasing property in 3D of


