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Abstract

In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth-

ods are considered for solving the second order variational inequality with displacement

obstacle. The convergence analysis is presented and the optimal order error estimates are

obtained under the hypothesis of the finite length of the free boundary. Numerical results

are provided to illustrate the correctness of theoretical analysis.
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1. Introduction

The variational inequality problem with displacement obstacle has been a very interesting

subject in many fields, see, e.g., [1,2]. As usual, it reads as: to find u ∈ K, such that

a(u, v − u) ≥ f(v − u), ∀ v ∈ K, (1.1)

where

a(u, v) =

∫

Ω

∇u · ∇vdxdy, f(v) =

∫

Ω

fvdxdy, (1.2a)

K =
{
v ∈ H1

0 (Ω) : v ≥ χ a.e. in Ω; χ ≤ 0 on ∂Ω
}
, (1.2b)

Ω ⊂ R2 is bounded convex domain. f ∈ L∞(Ω) and χ ∈ H2(Ω) are given functions.

The variational inequality theory was first introduced by Hartman and Stampacchia [3] to

study the partial differential equations, and has been playing more and more important role in

the contact problem, obstacle problem, elasticity problem, traffic problem, and so on.
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As to the problem shown in (1.1), there have been numerous studies with different finite

elements, such as conforming linear triangular element [1,4-6], quadratic element [7], noncon-

forming Crouzeix-Raviart type linear triangular element and rectangular Wilson element [8-10].

Based on the detailed analysis, the error bound of order O(h3/2−ε), for any ε > 0, was obtained

in [4] for the quadratic finite element under the hypothesis of that the free boundary has finite

length. Further, [7] derived the same error bound as [4] for the same quadratic element with-

out the above hypothesis. In [8], the Crouzeix-Raviart type nonconforming linear triangular

element was used to problem (1.1) and the error bound was estimated with order O(h).

However, to the best knowledge of the authors, all of the above studies on error estimates

depend on the essential condition of the discrete meshes, i.e., regular assumption hK

ρK
≤ C or

quasi-uniform assumption h
hK

≤ C, ∀ K ∈ Jh, where hK , ρK denote the diameters of element

K and biggest circle contained in K, respectively, h = max
K∈Jh

hK , Jh is a subdivision of Ω, C is

a positive constant which is independent of h and the function under consideration.

As we know, the domain considered may be narrow or irregular, and the cost of calculation

will be very expensive if we employ the regular subdivision on the domain. Naturally, it is an

obvious idea to use an anisotropic partition with fewer degrees of freedom for simplicity in the

application. But, in this case, some difficulties will arise in the convergence analysis and error

estimates of interpolation and consistency errors for nonconforming finite element methods. For

example, the Bramble-Hilbert lemma, the traditional interpolation theory in Sobolev spaces,

can not be directly applied to the interpolation error estimates for the meshes are characterized

by hK

ρK
→ ∞, where the limit can be considered as h → 0. On the other hand, when we deal

with the consistency error estimate on the longer or the longest edge F of the element K, there

will appear a factor |F |
|K| , which may tend to infinity and makes the estimate in vain.

In order to overcome the above difficulties, some researches have been devoted to the inves-

tigation on the narrow and anisotropic finite elements for the practical problems [11-14]. But

there are only a few of articles considering the variational inequality problem with nonconform-

ing finite elements. For example, anisotropic Carey element and Wilson element approximations

to the second order obstacle problem were investigated in [15], in which the proofs of the main

results are simplified greatly comparing with [8] and [9]. But the techniques used in [15] are

only valid to the finite elements when their interpolations can be separated into the conforming

part and nonconforming part. Moreover, a class of Crouzeix-Raviart type finite elements were

applied to the Signorini variational problem in [16], and [17] extended them to the parabolic

variational inequality problem with moving grids.

In [18], a nonconforming rotated Q1 element was proposed, of which the degrees of freedom

are function values of the midpoints of four edges of element K, and the shape function space

is spanned by {1, x, y, x2 − y2}. However, it has been proved in [14] that this element can not

be applied to anisotropic meshes directly by a counter example. At the same time, [14] also

proposed a kind of modified nonconforming finite element with the degrees of freedom of mean-

values on the four edges of element K , and the shape function space is spanned by {1, x, y, x2}

or {1, x, y, y2}, and proved its convergence for the second order problem on a special anisotropic

meshes, i.e., the longer edges of all the elements should parallel to x-axis or y-axis, respectively.

Obviously, the shape function space of this modification is asymmetrical and the requirement

on meshes is too strong.

Recently, there have appeared a lot of studies focusing on the analysis of convergence,

supercloseness and supercongvergence for some anisotropic finite element methods (cf. [19-23]).

However, the applications of Crouzeix-Raviart type anisotropic nonconforming linear triangular


