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Abstract

An effective algorithm for solving large saddle-point linear systems, presented by Krukier

et al., is applied to the constrained optimization problems. This method is a modification

of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point

linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied

to precondition the GMRES. Numerical results have confirmed the effectiveness of the

method and showed that the new method can produce high-quality preconditioners for the

Krylov subspace methods for solving large sparse saddle-point linear systems.
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1. Introduction

Large sparse linear systems of saddle-point type arise in different applications. In many

cases the matrix of such linear system has zero (2, 2) block. Consider iterative solution of the

large sparse indefinite system of linear equations in block-structured form

(
M ET

E 0

)(
u

µ

)
=

(
f

g

)
.

The matrix M ∈ R
p×p is assumed to be symmetric positive semidefinite, the matrix E ∈ R

q×p

has full row rank, q ≤ p, f ∈ R
p and g ∈ R

q are two given vectors. Here ET denotes the

transpose of the matrix E. We assume that matrices M and E have no nontrivial null vectors.

It is the condition that guarantees the existence and uniqueness of the solution; see [2].

This linear system corresponds to minimizing the quadratic objective functional J(u) ≡
1
2u

TMu − uT f , subject to q linear constraints Eu = g. The Lagrangian functional L(u, µ) =

J(u)+µT (Eu−g) is associated with this constrained minimization problem, µ denotes the vector

of Lagrange multipliers. Here M is the Hessian of the quadratic function to be minimized, and

E is the Jacobian of the linear constraints [10, 11, 14].

A number of solvers have been developed for saddle-point linear systems in recent years,

for example, projection methods [8], null space methods [1], HSS-like methods [3, 4, 6, 9],

generalized successive overrelaxation methods [7], SSOR-like methods [18], and so on.
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We consider cases when the (1, 1) block in the linear system is semidefinite or singular.

Frequently the singularity appears in the form of semidefiniteness. Our approach is based

on augmentation of the (1, 1) block. We replace the (1, 1) block by a matrix that is much

easier to invert. We employ the augmented Lagrangian method, the matrix M will be replaced

by a positive definite matrix, and iterative methods can be applied to solve the augmented

linear system. We replace the quadratic objective functional J(u) by a regularized functional

Jγ(u) ≡ J(u)+γ‖Eu−g‖2W , where γ > 0 is a parameter, W = WT > 0 is a weighting matrix of

size q, and ‖Eu−g‖2W = (Eu−g)TW (Eu−g). The augmented Lagrangian Lγ(u, µ) associated

with the minimization of Jγ(u) is defined as [13]:

Lγ(u, µ) = L(u, µ) +
γ

2
‖Eu− g‖2W . (1.1)

In the augmented saddle-point linear system, matrix M will be replaced by the matrix M̃ ≡

M + γETWE that will be positive definite for γ > 0. Applying the first derivative test to

determine the saddle point of Lγ(u, µ) yields the following linear system [13, 14]:

(
M̃ ET

E 0

)(
u

µ

)
=

(
f + γETWg

g

)
. (1.2)

Clearly, this linear system has precisely the same solution as the original one.

Recently in [15] the authors presented generalized skew-Hermitian triangular splitting it-

eration method (GSTS) for solving large non-Hermitian linear systems. The GSTS iteration

method reduces to the skew-Hermitian triangular splitting (STS) iteration method studied in

[17] and the product-type skew-Hermitian triangular splitting (PSTS) iteration method es-

tablished in [16]. Then authors applied the GSTS iteration method to solve non-Hermitian

saddle-point linear systems, proved its convergence under suitable restrictions on the iteration

parameters, and implemented the method by solving the Stokes problem [15].

For iteratively solving linear systems arising in the constrained optimization problems, we

use the GSOR [7] and the GSTS iteration methods. Numerical results show that the GSTS

iteration method is effective for solving saddle-point linear systems arising in the constrained

optimization problems with singular or semidefinite (1, 1) blocks by the augmented Lagrangian

method.

2. Iteration Methods

We can rewrite the saddle-point linear system into an equivalent non-symmetric form [10,11]

Ax = b, (2.1a)

where

A =

(
M ET

−E 0

)
, x =

(
u

µ

)
, b =

(
f

−g

)
. (2.1b)

The matrix A ∈ R
(p+q)×(p+q) is positive stable now, that is, the eigenvalues of A have

positive real parts [9, 11]. Analogous to [5] the matrix A can be split into its symmetric and

skew-symmetric parts as

A = AH +AS , (2.2)


