
Journal of Computational Mathematics

Vol.32, No.2, 2014, 195–204.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1401-m4385

ON L
2 ERROR ESTIMATE FOR WEAK GALERKIN FINITE

ELEMENT METHODS FOR PARABOLIC PROBLEMS*

Fuzheng Gao

School of Mathematics, Shandong University, Jinan, Shandong 250100, China

Email: fzgao@sdu.edu.cn

Lin Mu

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Email: linmu@math.msu.edu

Abstract

A weak Galerkin finite element method with stabilization term, which is symmetric,

positive definite and parameter free, was proposed to solve parabolic equations by using

weakly defined gradient operators over discontinuous functions. In this paper, we derive the

optimal order error estimate in L2 norm based on dual argument. Numerical experiment

is conducted to confirm the theoretical results.
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1. Introduction

We consider in this paper the approximation of a parabolic problem on a bounded domain

Ω ⊂ R2 of the form

ut −∇ · (a∇u) = f, x ∈ Ω, 0 < t ≤ T, (1.1a)

u = u0, x ∈ Ω, t = 0, (1.1b)

with homogenous Dirichlet boundary condition, where ut is the time partial derivative of u(x, t);

a(x) is an uniformly positive on Ω̄ and a(x), f(x, t) and u0(x) are assumed to be sufficiently

smooth. Since the 1950s, scientists have formulated time-stepping procedures to numerically

approximate the solutions of such problems.

Numerical methods for such parabolic problems can be classified as two categories. The first

category consists of finite difference methods that use difference quotient to replace differential

quotient and the other refers to as finite element methods, see, e.g., [3, 5, 6, 11–13, 17] and

references in.

The WG-FEMs, which was first introduced by Wang and Ye [15] for solving the second order

elliptic problems, are newly developed FEMs. The novel idea of WG-FEMs is to introduce weak

functions and weak derivatives, and allows the use of totally discontinuous piecewise polynomials

in the finite element procedure. Later, The WG -FEMs were studied from implementation point

of view in [7] and applied to solve the Helmholtz problem with high wave numbers in [9].

A WG-FEM was introduced and analyzed for parabolic equations based on a discrete weak

gradient arising from local RT [10]. Due to the use of RT elements, the WG finite element
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formulation of [4] was limited to classical finite element partitions of triangles (d = 2) or

tetrahedra (d = 3). In our previous work, we presented a WG-FEM with stabilization term

for a parabolic equation. This method is symmetric, positive definite and parameter free, and

allows the use of partitions with arbitrary polygons in two dimensions, or polyhedra in three

dimensions with certain shape regularity. Optimal convergence rate in H1 norm and suboptimal

convergence rate in L2 norm for the WG approximation are derived. The objective of this paper

is to derive an optimal order error estimate in L2 norm based on dual argument technique for

the solution of the WG-FEM.

The paper is organized as follows. Section 1 is introduction. In Section 2, we define weak

gradient and present semi-discrete and full-discrete WG-FEM for problem (1.1). In Section 3,

we establish the optimal order error estimates in L2-norm to the WG-FEM for the parabolic

problem based on dual argument. Finally, in Section 4 we give some numerical examples to

verify the theory.

Throughout this paper, the notations of standard Sobolev spaces L2(Ω), Hk(Ω) and asso-

ciated norms ‖ · ‖ = ‖ · ‖L2(Ω), ‖ · ‖k = ‖ · ‖Hk(Ω) are adopted as those in [1, 2].

2. A Weak Galerkin Finite Element Method

The variational form to (1.1) is seeking u = u(x, t) ∈ L2(0, T ;H1
0 (Ω)), such that

(ut, v) + a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω), t > 0, (2.1a)

u(x, 0) = u0(x), x ∈ Ω, (2.1b)

where (·, ·) denotes the inner product of L2(Ω) and a(·, ·) is defined in (2.2).

a(v, w) =

∫

Ω

a∇v · ∇wdx. (2.2)

It is well known that the solution to (2.1) is called generalized solution of (1.1).

Let Th be a partition of the domain Ω consisting of polygons in two dimension or polyhedra

in three dimension satisfying a set of conditions [14]. Define (u, v)T =
∫

T
uvdx and 〈u, v〉∂T =

∫

∂T
uvds. We introduce a trial function space Vh, which is called weak Galerkin finite element

space, as follows

Vh :=
{

v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk(e), e ⊂ ∂T, ∀T ∈ Th

}

, (2.3)

where T 0 and ∂T denote the interior and boundary of element T ∈ Th respectively. Let Pk(T
0)

and Pk(∂T ) be the sets of polynomials on T 0 and ∂T with degree no more than k respectively.

v0 represents the value of v on T 0 and vb represents that of v on ∂T , respectively. We define

V 0
h as a subspace of Vh with zero boundary value, i.e.,

V 0
h :=

{

v = {v0, vb} ∈ Vh, vb |∂T
⋂

∂Ω= 0, ∀T ∈ Th

}

. (2.4)

For each v = {v0, vb} ∈ Vh, we define the weak discrete gradient ∇wv ∈ [Pk−1(T )]
2 of v on each

element T by the equation as:

(∇wv, q)T = −(v0,∇ · q) + 〈vb, q · n〉∂T , ∀q ∈ [Pk−1(T )]
2. (2.5)


