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Abstract

We propose a non-traditional finite element method with non-body-fitting grids to solve

the matrix coefficient elliptic equations with sharp-edged interfaces. All possible situations

that the interface cuts the grid are considered. Both Dirichlet and Neumann boundary

conditions are discussed. The coefficient matrix data can be given only on the grids, rather

than an analytical function. Extensive numerical experiments show that this method is

second order accurate in the L∞ norm.
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1. Introduction and Formulations

Elliptic interface problems are widely used in a variety of disciplines when there are multi-

physics and multi-phase materials, such as in electromagnetics, material science, fluid dynamics

and so on.

We consider a rectangular domain Ω = (xmin, xmax) × (ymin, ymax). Γ is an interface

prescribed by the zero level-set {(x, y) ∈ Ω | φ(x, y) = 0} of a level-set function φ(x, y). The

advantage of using the level-set function is to represent interface cut locations on the grids

without having to parameterize the interface. The unit normal vector of Γ is n = ∇φ
|∇φ| pointing

from Ω− = {(x, y) ∈ Ω | φ(x, y) ≤ 0} to Ω+ = {(x, y) ∈ Ω | φ(x, y) ≥ 0}. Consider the problem

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω±,

[u(x)] = a(x), x ∈ Γ,

[(β(x)∇u(x)) · n] = b(x), x ∈ Γ,

u(x) = g(x), x ∈ ∂Ω,

or
∂u(x)

∂n
= 0, x ∈ ∂Ω,

where x = (x1, ..., xd) denotes the spatial variables and ▽ is the gradient operator. The

coefficient β(x) is assumed to be a d × d matrix that is uniformly elliptic on each disjoint
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subdomain, Ω− and Ω+, and its components are continuously differentiable on each disjoint

subdomain, but they may be discontinuous across the interface Γ. The right-hand side f(x) is

assumed to lie in L2(Ω). We have the following jump conditions:

{

[u](x) ≡ u+(x) − u−(x) = a(x),

[(β ▽ u) · n]Γ (x) ≡ n · (β+(x)▽ u+(x)) − n · (β−(x)▽ u−(x)) = b(x).

We introduce the weak solution by the standard procedure of multiplying by a test function

and integrating by parts: for the problem with Dirichlet Boundary Condition,

∫

Ω+

β ▽ u · ▽ψ +

∫

Ω−

β ▽ u · ▽ψ =

∫

Ω

fψ −

∫

Γ

bψ; (1.1)

and for the problem with Neumann Boundary Condition,

∫

Ω+

β ▽ u · ▽ψ +

∫

Ω−

β ▽ u · ▽ψ +

∫

∂Ω

∂u

∂n
ψ =

∫

Ω

fψ −

∫

Γ

bψ, (1.2)

where ψ is in H1
0 for equation 1.1 and H1 for (1.2).

The pioneering work on this topic was done by Peskin in 1977. The method he proposed

was called “immersed boundary” method [11, 12]. It uses a numerical approximation of the δ-

function, which smears out the solution on a thin finite band around the interface Γ. In [13], the

“immersed boundary” method was combined with the level set method, resulting in a first order

numerical method that is simple to implement, even in multiple spatial dimensions. However,

for both methods, the numerical smearing at the interface forces continuity of the solution at

the interface, regardless of the interface condition [u] = a, where a might not be zero.

To achieve high order accuracy, a large class of finite difference methods have been proposed.

The main idea is to use difference scheme and stencils carefully near the interface to incorporate

jump conditions and achieve high order local truncation error using Taylor expansion. Using

finite difference scheme typically requires taking high order derivatives of jump conditions and

interface in Taylor expansion. Also property of the discretized linear system is hard to analyze

for interface problem with general jump condition.

The “immersed interface” method presented in [3] can get second-order accuracy. This

method incorporates the interface conditions into the finite difference stencil, provided that

neither of the two jump conditions are zero. The corresponding linear system is sparse, but not

symmetric or positive definite. Various applications and extensions of the “immersed interface”

method are discussed in [6].

In [4], on basis of the “immersed interface” method, a fast iterative method was proposed

to solve constant coefficient problems with the interface conditions [u] = 0 and [βun] 6= 0. Non-

body-fitting Cartesian grids are used, and then associated uniform triangulations are added on.

Interfaces are not necessarily aligned with cell boundaries. Numerical evidence shows that this

method’s conforming version achieves second order accuracy in the L∞ norm, and higher than

first order for its non-conforming version.

Using finite element method developed in [17], elliptic problems with the interface conditions

[u] = 0 and [βun] 6= 0 can obtain second order accuracy in energy norm and nearly second order

accuracy in the L2 norm. Interfaces are aligned with cell boundaries.

In [9,10], the solution is extended to a rectangular region by using Fredholm integral equa-

tions. The proposed method can deal with interface conditions [u] 6= 0 and [un] = 0 and when

Greens function is available. The discrete Laplacian was evaluated using these jump conditions


