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Abstract

In this paper we continue the study of discontinuous Galerkin finite element methods

for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth-

ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for

diffusion with interface corrections [18]. We introduce a numerical flux for the test func-

tion, and obtain a new direct discontinuous Galerkin method with symmetric structure.

Second order derivative jump terms are included in the numerical flux formula and explicit

guidelines for choosing the numerical flux are given. The constructed scheme has a sym-

metric property and an optimal L2(L2) error estimate is obtained. Numerical examples are

carried out to demonstrate the optimal (k+1)th order of accuracy for the method with P k

polynomial approximations for both linear and nonlinear problems, under one-dimensional

and two-dimensional settings.
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1. Introduction

This paper is a continuous study following [17] and [18] regarding a discontinuous Galerkin

finite element method for solving time dependent nonlinear diffusion equations of the form

Ut −∇ · (A(U)∇U) = 0, (x, t) ∈ Ω× (0, T ), (1.1)

where Ω ⊂ Rd, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U is an

unknown function of (x, t) with x ∈ Ω.

The discontinuous Galerkin (DG) method is a finite element method with discontinuous

piecewise function space for the numerical solution and the test functions. Lacking the restric-

tions of continuities across the computational cells makes these methods extremely flexible. As

a result, DG methods have found application in diverse areas. The application of DG methods

to hyperbolic problems has been quite successful since it was originally introduced by Reed

and Hill [21] in 1973 for neutron transport equations. A major development of the DG method

for nonlinear hyperbolic conservation laws was carried out by Cockburn, Shu, etc. We refer

to [9–11] for reviews and further references of DG methods for hyperbolic type of PDEs.

However, application of DG method to diffusion problems has been a challenging task be-

cause of the subtle difficulty in defining appropriate numerical fluxes for diffusion terms, see

* Received September 27, 2012 / Revised version received May 9, 2013 / Accepted July 9, 2013 /

Published online October 18, 2013 /



A New Direct DG Method for Nonlinear Diffusion Equations 639

e.g. [23]. There have been several DG methods suggested in literature for solving diffusion

problems. One class is the interior penalty (IP) method, which dates back to 1982 as the

symmetric interior penalty (SIPG) method by Arnold [1] (also by Baker in [3] and Wheeler

in [28]). We also have the Baumann and Oden method [5, 20], the NIPG method [22] and

the IIPG method [13]. Another class is the local discontinuous Galerkin (LDG) methods intro-

duced in [12] by Cockburn and Shu (originally proposed by Bassi and Rebay [4] for compressible

Navier-Stokes equations). We refer to the unified analysis article [2] in 2002 for different DG

methods involving diffusion term and background references for other DG methods. More re-

cent works include those by Van Leer and Nomura in [26], Gassner et al. in [16], Cheng and

Shu in [8] and Brenner et al. in [6].

Recently in [17], we develop a direct discontinuous Galerkin (DDG) method for diffusion

equations. The scheme is based on the direct weak formulation of (1.1), and a general numerical

flux formula for the solution derivative is proposed. An optimal kth order error estimate in

an energy norm is obtained with P k polynomial approximations for linear diffusion equations.

However, numerical experiments in [17] show that when measured under L2 and L∞ norms, the

scheme accuracy is sensitive to the coefficients in the numerical flux formula. That is, for higher

order P k (k ≥ 4) polynomial approximations it is difficult to identify suitable coefficients in the

numerical flux to obtain optimal (k+ 1)th order of accuracy. In [18], extra interface correction

terms are introduced into the scheme formulation, and a refined version of the DDG method is

obtained. A simpler numerical flux formula is used in [18] and numerically optimal (k + 1)th

order of accuracy is achieved for any P k polynomial approximations.

The DDG method [17] and the DDG method with interface corrections [18] are schemes

which both lack symmetric properties. Thus it is difficult to obtain L2 error analysis. In

this work, we introduce a numerical flux for the test function derivative and include more

interface terms in the scheme formulation. With the same numerical flux formula for the

solution derivative and test function derivative, the bilinear form for the diffusion term thus

obtained has a symmetric property. This symmetric structure is the key to further prove an

optimal L2(L2) error estimate for the DG solution. Also, new guidelines for choosing admissible

numerical fluxes are given. The symmetric DDG method is not sensitive to the coefficients in

the numerical flux formula. There exists a large class of admissible numerical fluxes that lead

to the optimal convergence. Compared to the SIPG method [1], the penalty coefficient estimate

can be decreased from k2 to k2/4. One-dimensional and two-dimensional numerical examples

are carried out and we obtain (k+1)th optimal order of accuracy with piecewise P k polynomial

approximations for both linear and nonlinear diffusion problems.

In this paper we use uppercase letters to represent the exact solution and lowercase letters

to represent the DG numerical solution and test functions. The rest of the paper is organized as

follows. In §2, we describe the scheme formulation for the linear and nonlinear one-dimensional

diffusion equations, present admissibility and stability results, and establish an energy norm

error estimate for the linear case. In §3, extension to two-dimensional diffusion problems is

given. The optimal L2(L2) error estimate for the linear two-dimensional equation is presented

in §4. Finally numerical examples are shown in §5.

2. One-Dimensional Diffusion Equations

2.1. Scheme formulation for 1-D linear diffusion equation

In this section, we present the new discontinuous Galerkin method with the following 1-D


