
Journal of Computational Mathematics

Vol.31, No.6, 2013, 573–591.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1309-m3592

ON THE QUASI-RANDOM CHOICE METHOD FOR THE
LIOUVILLE EQUATION OF GEOMETRICAL OPTICS WITH

DISCONTINUOUS WAVE SPEED*

Jingwei Hu

Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin,

201 East 24th St, Stop C0200, Austin, TX 78712, USA

Email: hu@ices.utexas.edu

Shi Jin

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,

Madison, WI 53706, USA

Department of Mathematics, Institute of Natural Sciences, and MOE Key Lab in Scientific and

Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China

Email: jin@math.wisc.edu

Abstract

We study the quasi-random choice method (QRCM) for the Liouville equation of ge-

ometrical optics with discontinuous local wave speed. This equation arises in the phase

space computation of high frequency waves through interfaces, where waves undergo partial

transmissions and reflections. The numerical challenges include interface, contact discon-

tinuities, and measure-valued solutions. The so-called QRCM is a random choice method

based on quasi-random sampling (a deterministic alternative to random sampling). The

method not only is viscosity-free but also provides faster convergence rate. Therefore, it

is appealing for the problem under study which is indeed a Hamiltonian flow. Our analy-

sis and computational results show that the QRCM 1) is almost first-order accurate even

with the aforementioned discontinuities; 2) gives sharp resolutions for all discontinuities

encountered in the problem; and 3) for measure-valued solutions, does not need the level

set decomposition for finite difference/volume methods with numerical viscosities.
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1. Introduction

In this paper, we study a type of Monte Carlo methods for numerical computation of the

Liouville equation in geometrical optics. Let f(x,v, t) be the energy density distribution of

waves that depends on position x, slowness vector v, and time t, then the Liouville equation

reads

ft +∇vH · ∇xf −∇xH · ∇vf = 0, t > 0, x,v ∈ Rd, (1.1)

where the Hamiltonian H is given by

H(x,v) = c(x)|v| (1.2)
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with c(x) being the local wave speed of the medium. The bicharacteristics of equation (1.1)

satisfy the Hamiltonian system:

dx

dt
= c

v

|v|
,

dv

dt
= −∇xc|v|. (1.3)

The Liouville equation (1.1) arises in the phase space description of geometrical optics. It can

be derived as the high frequency limit of the wave equation

utt − c(x)2∆u = 0 (1.4)

via the Wigner transform [1–3]. It is also the basis of computing multi-valued physical observ-

ables [4–8].

We are particularly interested in the case when c(x) contains discontinuities due to different

refractive indices at different media. The discontinuity corresponds to an interface, at which

incoming waves can be partially transmitted and reflected. Against this background, much

work has been done in the past both analytically [9–12] and numerically [13–18]. Numerically

this problem consists of three challenges:

(1) One needs to provide an interface condition at the discontinuities of c(x) to account for

partial transmissions and reflections. This was first done in [13, 14], where the interface condi-

tions (consistent to Snell’s law) were built into numerical fluxes — the so-called Hamiltonian-

preserving (HP) scheme.

(2) Due to the transmissions and reflections, f becomes discontinuous which then propa-

gates linearly along the bicharacteristics (1.3). These are linear (contact) discontinuities that

will be smeared by a typical finite difference or finite volume method, which necessarily con-

tains numerical viscosities to suppress numerical oscillations across the discontinuities, with the

smearing zone increases with time [19].

(3) The Liouville equation arising in geometrical optics or semiclassical limit involves measure-

valued initial condition of delta-function shape:

f(x,v, 0) = ρ0(x)δ(v − u0(x)). (1.5)

The solution at later time remains measure-valued (with finite or even infinite number of con-

centrations corresponding to caustics in the physical space). For this type of problem, finite

difference/volume methods usually produce poor quality results as the approximate delta func-

tions are quickly smeared out due to numerical dissipation. The level set method proposed

in [20] decomposes f into φ and ψi (i = 1, . . . , d), where φ and ψi solve the same Liouville

equation with initial data

φ(x,v, 0) = ρ0(x), ψi(x,v, 0) = vi − u0i(x) (1.6)

respectively. The density and averaged slowness can then be recovered by taking the moments

of f :

ρ(x, t) =

∫
Rd

f(x,v, t) dv =

∫
Rd

φΠd
i=1δ(ψi) dv, (1.7)

u(x, t) =
1

ρ(x, t)

∫
Rd

f(x,v, t)v dv =
1

ρ(x, t)

∫
Rd

φΠd
i=1δ(ψi)v dv. (1.8)

This approach allows the computation of bounded rather than measure-valued solutions, which

greatly enhances the numerical resolution. However, as pointed out in [8, 14], it only readily


