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Abstract

In this paper, we propose a local multilevel preconditioner for the mortar finite element

approximations of the elliptic problems. With some mesh assumptions on the interface, we

prove that the condition number of the preconditioned systems is independent of the large

jump of the coefficients but depends on the mesh levels around the cross points. Some

numerical experiments are presented to confirm our theoretical results.
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1. Introduction

In this paper, we present a local multilevel preconditioner for the adaptive mortar finite

element method for the following second order elliptic problems:{
−∇ · (ρ∇u) = f, in Ω,

u = 0, on ∂Ω,
(1.1)

where ρ > 0 is a piecewise constant, f ∈ L2(Ω), and Ω is a polygonal domain.

The mortar finite element method is a technique for dealing with different discretization

schemes on different subdomains [1, 2]. It is effective for solving problems with complicated

geometries, heterogeneous material, multi-physics, and so on. In this paper, we use the mortar

finite element method to handle the nonmatching meshes. Based on a posteriori error esti-

mators, the adaptive finite element methods are now widely used to achieve better accuracy

with minimum degrees of freedom. Combining the mortar approach and the adaptive finite

element methods, many researchers propose different a posteriori error estimators (see [7, 8]

and the references therein for details). The first author and his collaborator [23] also proposed

some residual-based a posteriori error estimators, and the analysis does not require satura-

tion assumptions or mesh restrictions on the interface which are often needed in the literature.

However, there are rather few results on developing efficient solvers for the discrete problems.

Based on quasi-uniform grids, Wohlmuth [26] and Gopalakrishnan [17] introduced V -cycle and

W -cycle multigrid methods for the mortar finite element method for elliptic problems respec-

tively. Xu and Chen [31] discussed a W -cycle multigrid algorithm for the mortar element

method for the P1 nonconforming element.
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Since the mesh is refined locally in the process of adaptivity, traditional multigrid meth-

ods, in which the smoothing is performed on all nodes, may not be optimal or quasi-optimal

(see [19]). Wu and Chen [27] first proved that the local multigrid method, in which the smooth-

ing was performed on new nodes and their “immediate” neighbors of each level, was optimal

for the adaptive finite element method for the Poisson equation in two dimension. In [13, 15],

Xu, etc., introduced and analyzed some local multigrid methods based on reconstructed adap-

tive grid, which was applied to the adaptive finite element methods for the elliptic problems

with discontinuous coefficients [14]. Based on the adaptive grid, Xu and Chen [11, 12, 30] also

proposed and analyzed some local multilevel methods for P1 conforming and nonconforming

element methods for the elliptic problems. Recently, Lu, Shi and Xu [18] considered the lo-

cal multilevel methods for discontinuous Galerkin finite element method on adaptively refined

meshes.

The purpose of this paper is to present a local multilevel preconditioner for the mortar finite

element method for the second order elliptic problems with discontinuous coefficients. Since

the finite element spaces are nonnested, intergrid transfer operators, which are stable under the

weighted L2 norm and energy norm, are introduced to exchange information between different

meshes. On each level, the smoothing is performed on the new free nodes and the old free nodes

associated with which the basis functions are changed. In addition, we also need to smooth on

all the mortar side nodes on the finest level. With the assumption that each mortar side edge

is the union of some whole nonmortar side edges (see Fig. 2.2 for an illustration), we prove

that the condition number of preconditioned system is independent of the large jump of the

coefficients but relies logarithmically on the mesh size around the cross points.

The remainder of the paper is organized as follows. In Section 2, we present the discrete

problem and some notations. The local multilevel preconditioner is proposed in Section 3. In

Section 4, we give the condition number estimate of the preconditioned system. Finally, we

present some numerical experiments to confirm our theoretical results.

For convenience of discussions, we usually use inequalities a . b, a ' b to replace a ≤ Cb

and cb ≤ a ≤ Cb with some multiplicative mesh size and coefficient independent constants

c, C > 0 that depend only on the domain Ω and the shape (e.g., through the aspect ratio) of

elements.

2. Preliminary

The weak form of the problem (1.1) is to find u ∈ H1
0 (Ω) satisfying

a(u, v) , (ρ∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω). (2.1)

Let Ω be partitioned into non-overlapping polygonal subdomains {Ωi}Ni=1. We only consider

the geometrically conforming case, i.e., the intersection between the closure of two different sub-

domains is empty, a vertex, or an edge. The coefficient ρ is a constant when restricted to each

subdomain Ωi. We use Γij to denote the common open edge of Ωi and Ωj , Γ =
⋃
ij Γij . Given

an initial shape regular triangulation T1(Ω), which is conforming in each subdomain, {Tl(Ω),

2 ≤ l ≤ L} is a set of triangulations generated by the adaptive finite element procedure [23].

We note that the resulting triangulation Tl(Ω) can be non-matched across adjacent subdomain

interfaces, so each Γij can be regarded as two sides corresponding to the two subdomains Ωi
and Ωj . We call one of the sides of Γij as the mortar side and the other one as the nonmortar

side. For each interface, we choose the side of the subdomain on which the coefficient is larger


