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Abstract

A sparse-grid method for solving multi-dimensional backward stochastic differential

equations (BSDEs) based on a multi-step time discretization scheme [31] is presented.

In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathe-

matical expectations derived from the original equation are approximated using sparse-grid

Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error

estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs

with certain types of simplified generator functions. Finally, several numerical examples

are provided to illustrate the accuracy and efficiency of our scheme.
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1. Introduction

We consider the following backward stochastic differential equation (BSDE)





−dyt = f(t, yt, zt)dt− ztdWt, t ∈ [0, T ),

yT = ξ,
(1.1)

where T is a fixed positive number, Wt is the standard d-dimensional Brownian motion de-

fined on a complete, filtered probability space (Ω,F ,P, {Ft}0≤t≤T ), f(t, yt, zt) is an adapted

stochastic process with respect to {Ft} (0 ≤ t ≤ T ) for each (yt, zt), and ξ is an {FT} mea-

surable random variable. The existence and uniqueness of the solution of the BSDE (1.1) were

proved by Pardoux and Peng in [20]. Since then, BSDEs and their solutions have been exten-

sively studied. In [22], Peng obtained a direct relation between forward-backward stochastic

differential equations and partial differential equations and then, in [21], he also derived a max-

imum principle for stochastic control problems. Many important properties of BSDEs and their

applications in finance were studied by Karoui et al. in [8].
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Because analytical solutions of BSDEs are often very difficult to obtain, approximate nu-

merical solutions of BSDEs become highly desired in practical applications. There are mainly

two types of numerical methods for BSDEs. One is based on the relation between the forward-

backward stochastic differential equations (FBSDEs) and corresponding parabolic partial dif-

ferential equation (PDEs) [13,14,22]; the other is directly based on BSDEs or FBSDEs [2,3,6,

7, 10, 12, 23, 27, 28, 30, 31]. Zhao et al. proposed a θ-scheme for BSDEs in [28]; in [29], it was

extended to a generalized θ-scheme. In [31], a stable multi-step scheme was proposed which is

a highly accurate numerical method for BSDEs. Note that for the second type of numerical

methods, approximating spatial derivatives at different time-space points for the case of PDEs

is converted to approximating conditional mathematical expectations with Gaussian kernels

centered at different time-space points.

It should be noted that the BSDEs used in practice usually involve a multi-dimensional

Brownian motion, such as the option pricing problem with multiple underlying assets. Ex-

isting numerical methods for BSDEs can be theoretically extended to the multi-dimensional

cases; however, the computational cost may be unaffordable due to the so-called curse of di-

mensionality. The most popular approach to solving multi-dimensional BSDEs is the Monte

Carlo method [3,28] that is very easy to implement. However, the convergence rate is typically

very slow, although having a mild dependence on the dimensionality. Thus, an accurate and

efficient numerical method for solving multi-dimensional BSDEs is highly desired in the BSDE

community.

In this paper, we extend the multi-step method in [31] using the sparse-grid method for

solving multi-dimensional BSDEs. As discussed in [31], the target BSDE (1.1) is discretized by

the multi-step scheme in the time direction. In the spatial domain, a quadrature rule is needed

to approximate all the conditional mathematical expectations (multi-dimensional integrals) and

an interpolation scheme is also needed to evaluate the integrands of the expectations at non-

grid quadrature points. The sparse-grid method is highly suitable for the multi-step scheme

because it has been demonstrated to be effective and efficient in dealing with multi-dimensional

interpolation and quadrature [1,4,9,11,16–19]. Sparse-grid interpolantion (or quadrature rule)

resulting from the Smolyak algorithm depends weakly on dimensionality so the computational

expense can be significantly reduced; however, the accuracy can be preserved up to a logarithmic

factor compared with tensor-product interpolantion (or quadrature rule). On the other hand,

the multi-step method is also highly suitable for the sparse-grid method because no spatial

derivatives are involved in the multi-step scheme and the solution can be obtained without

solving a linear system. In comparison, the sparse-grid method can be potentially used together

with finite difference or finite element method to solve the associated parabolic PDE instead

solving the BSDE directly; in this case, spatial derivatives need to be discretized on sparse

grids such that the resulting linear system may have stability or conditioning issues and a CFL

condition needs to be satisfied for solving the time-dependent problem. In [24, 25], a spectral

sparse-grid method was proposed for elliptic problems, which does not have severe stability

or conditioning issues. However, in this paper, those issues on linear systems are completely

avoided in our method and the CFL condition is not needed either. In addition, the sparse-grid

method is also suitable for the θ-scheme in [28] and the generalized θ-scheme in [29]; we focus

on the multi-step method because it is more accurate than the other two schemes in the time

direction.

The main contributions in this paper are as follows:

• propose a fully-discrete scheme with the sparse-grid method for multi-dimensional BSDEs;


