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Abstract

The elementary analysis of this paper presents explicit expressions of the constants in

the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming

and Raviart-Thomas mixed finite element methods in the Poisson model problem. The

three constants and their dependences on some maximal angle in the triangulation are

indeed all comparable and allow accurate a priori error control.
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1. Introduction

Quantitative a priori error control for the three most popular lowest-order conforming,

nonconforming, and mixed 2D finite element methods (FEMs) named after Courant, Crouzeix-

Raviart, and Raviart-Thomas, depicted symbolically in Figure 1.1, is one of the most funda-

mental questions in the numerical analysis of partial differential equations (PDEs). For the

Courant FEM and the Raviart-Thomas mixed FEM (MFEM), there exist elementwise interpo-

lation operators I and IF such that the error analysis consists in an estimate of the Lebesgue

norms in the sense of

‖∇(v − Iv)‖L2(T ) ≤ C(T )hT
∥∥D2v

∥∥
L2(T )

for some smooth function v with Hessian D2v and the triangle T with diameter hT . The point

is that the constant C(T ) depends on the shape of the triangle but not on its size hT . The

textbook analysis is based on the Bramble-Hilbert lemma and so on some compact embeddings

on a reference geometry [1, 2]. The transformation formula then leads to some estimate of

C(T ) which is qualitative and can be quantified with the help of computer-justified values of

some eigenvalue problem on the reference triangle, cf. e.g., [3] for a historic overview and the

references quoted therein, in particular [4] for Courant and [5] for Raviart-Thomas FEM. This
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paper aims at direct elementary proofs of quantitative error estimates based on the Poincaré

inequality with some known constant plus elementary integration by parts.

The situation is somewhat different for the nonconforming FEMs because the local inter-

polation error through the natural interpolation operator INC is very sharp, even optimal by

some averaging property; but the global error is also driven by the interaction with the incon-

sistency. The standard textbook analysis employs some Strang-Fix type argument [1, 6] which

leads to two contributions and gives the reader the impression that the error analysis is even

more sensitive and perhaps even the scheme is more sensitive than the other two. In Braess [1]

page 111 one can even find the hint that the Crouzeix-Raviart nonconforming FEM (NCFEM)

is more sensitive with respect to large second order derivatives than the other two methods.

Fig. 1.1. Courant, Crouzeix-Raviart, and Raviart-Thomas FE.

This paper aims at a clarification by the comparison of the best known constants C(T ) for

the three FEMs at hand. In fact, the constant

C(α) :=

√
1/4 + 2/j2

1,1

1− | cosα|
, (1.1)

for a maximal angle 0 < α < π of a triangle T and the first positive root j1,1 of the Bessel

function J1, and its maximum

C(T ) := max
T∈T

C(max]T )

in a triangulation T of a 2D polygonal domain Ω play a dominant role. The main results of

this paper are the explicit error estimates

|||u− uC ||| ≤ C(T )
∥∥hTD2u

∥∥
L2(Ω)

, (1.2)

‖p− pRT ‖L2(Ω) ≤ C(T ) ‖hTDp‖L2(Ω) , (1.3)

|||u− uCR|||NC ≤
1

j1,1
osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

(1.4)

for the Courant, Raviart-Thomas and Crouzeix-Raviart finite element approximations uC , pRT
and uCR in a simple Poisson model problem and the oscillations osc(f, T ) defined in Section 6.

In particular, the constants (which are upper bounds) have the same behaviour as the angles

deteriorate with α ↗ π. The above estimate for the NCFEM displays the perturbation result

for an arbitrary L2 function f as a right-hand side in the Poisson model problem and thereby

corrects and sharpens a corresponding error analysis in [7]. The technique here bypasses the


