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Abstract

In this paper, by using multivariate divided differences to approximate the partial

derivative and superposition, we extend the multivariate quasi-interpolation scheme based

on dimension-splitting technique which can reproduce linear polynomials to the scheme

quadric polynomials. Furthermore, we give the approximation error of the modified scheme.

Our multivariate multiquadric quasi-interpolation scheme only requires information of lo-

cation points but not that of the derivatives of approximated function. Finally, numerical

experiments demonstrate that the approximation rate of our scheme is significantly im-

proved which is consistent with the theoretical results.
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1. Introduction

The approximation of multivariate functions from scattered data is an important theme in

numerical mathematics. One of the methods to attack this problem is quasi-interpolation. For

a set of functional values {f(Xj)}1≤j≤n taken on a set of nodes Ξ = {X1, X2, · · · , Xn} ⊆ R
d,

the form of quasi-interpolation function Qf(X) corresponding to f(X) is as follows

Qf (X) =

n
∑

j=1

f(Xj)ϕj(X), (1.1)

where {ϕj(X)} is a set of quasi-interpolation basis functions. Using quasi-interpolation there

is no need to solve large algebraic systems. The approximation properties of quasi-interpolants

in the case that Xj are the nodes of a uniform grid are well-understood. For example, the

quasi-interpolant
n
∑

j=1

f(jh)ϕ
(X − hj

h

)

can be studied via the theory of principal shift-invariant spaces, which has been developed

in several articles by de Boor et al. (see, e.g., [1,2]). Here ϕ is supposed to be a compactly
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supported or rapidly decaying function. Based on the Strang-Fix condition for ϕ, which is

equivalent to polynomial reproduction, convergence and approximation orders for several classes

of basis functions were obtained (see also [3-5]). Scattered data quasi-interpolation by functions,

which reproduces polynomials, has been studied by Buhmann et al. [6], Dyn and Ron [7], Wu

and Schaback [8], Feng and Li [9], Wu and Liu [10], and Wu and Xiong [11].

Beast and Powell [12] first proposed a univeriate quasi-interpolation formula where ϕi in

(1) is a linear combination of the Hardy’s MQ basis [13]

φi(x) =
√

(x − xi)2 + c2, x, xi ∈ R

and low order polynomials. Their formula requires the derivative informations of f at the

endpoints, which is not convenient for practical purposes. Wu and Schaback [8] proposed an-

other quasi-interpolation formula with modifications at the endpoints. Wu-Schaback’s formula

is given by

LDf(x) =
n
∑

i=0

fiαi(x), (1.2)

where fi, i = 0, · · · , n are the values of f(x) at nodes {xi} and the interpolation kernel αi(x)

is also formed from linear combinations of the MQ basis functions, plus a constant, and linear

polynomial:

α0(x) =
1

2
+

φ1(x)− (x− x0)

2(x1 − x0)
, (1.3a)

α1(x) =
φ2(x)− φ1(x)

2(x2 − x1)
−

φ1(x)− (x − x0)

2(x1 − x0)
, (1.3b)

αi(x) =
φi+1(x) − φi(x)

2(xi+1 − xi)
−

φi(x) − φi−1(x)

2(xi − xi−1)
, 2 ≤ i ≤ n− 2, (1.3c)

αn−1(x) =
(xn − x) − φn−1(x)

2(xn − xn−1)
−

φn−1(x) − φn−2(x)

2(xn−1 − xn−2)
, (1.3d)

αn(x) =
1

2
+

φn−1(x) − (xn − x)

2(xn − xn−1)
. (1.3e)

It is shown that (1.2) preserves monotonicity and convexity, and converges with a rate of

O(h2.5 log h) as c = O(h).

Ling [14] extended the univariate quasi-interpolation formula (1.2) to multidimensions using

the dimension-splitting multiquadric basis function approach. Given data {(xi, yj , fij), i =

0, 1, · · · , n, j = 0, 1, · · · ,m} , the form of dimension-splitting quasi-interpolation for MQ basis

function is

Φ1f(x, y) =

n
∑

i=0

m
∑

j=0

fijαi(x)βj(y), (1.4)

where αi(x), i = 0, 1, · · · , n are given by (1.3). Along that y direction, the basis functions βj(y)


