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Abstract

The total variation (TV) minimization problem is widely studied in image restora-

tion. Although many alternative methods have been proposed for its solution, the Newton

method remains not usable for the primal formulation due to no convergence. A previous

study by Chan, Zhou and Chan [15] considered a regularization parameter continuation

idea to increase the domain of convergence of the Newton method with some success but

no robust parameter selection schemes. In this paper, we consider a homotopy method for

the same primal TV formulation and propose to use curve tracking to select the regular-

ization parameter adaptively. It turns out that this idea helps to improve substantially

the previous work in efficiently solving the TV Euler-Lagrange equation. The same idea

is also considered for the two other methods as well as the deblurring problem, again with

improvements obtained. Numerical experiments show that our new methods are robust

and fast for image restoration, even for images with large noisy-to-signal ratio.
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1. Introduction

It is well known that an image can often become blurry and noisy if corrupted during

formation, transmission or recording process. This degradation makes it difficult to do further

image processing tasks such as edge detection, pattern recognition, and object tracking, etc.

Denote by z the observed image (known) and u the desired true image (unknown), both defined

on a bounded convex region Ω of Rd (for simplicity we will assume Ω to be a square in R
2).

Consider the common degradation model

z = Ku+ η, (1.1)

where η is an additive noise term (also unknown) and K is a known linear operator representing

the blur (usually a convolution), the image is only corrupted by noise when K is the identity.

We wish to reconstruct the true image u from the observed image z.
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There are many different modeling methods proposed to obtain an estimate of u [28]. One

effective and well-known method is the total variation-based method by Rudin, Osher and

Fatemi [26], consisting of solving the following constrained optimization problem:

min
u

∫

Ω

|∇u|dxdy subject to ‖Ku− z‖2 = σ2. (1.2)

Here | · | is the Euclidean norm in R
2, ‖ · ‖ is the norm in L2(Ω) and σ is the standard deviation

of the noise η. This problem is naturally linked to the following unconstrained problem – the

minimization of the total variation penalized least squares functional (see [8, 26, 28]):

α

∫

Ω

|∇u|dxdy +
1

2
‖Ku− z‖2, (1.3)

where α is a positive parameter controlling the trade-off between goodness of fit-to-the-data

and variability in u. The main advantage of the total variation restoration models is that their

solutions preserve edges very well. But other models without the TV are also effective [5,13,14].

In spite of the fact that the variational problem (1.3) is convex, the computation is not easy

since the total variation semi-norm is a nonlinear nondifferentiable functional. To overcome

the nondifferentiation difficulty, one approach is the dual methods (see [3, 7]) and the other

is a split Bregman iteration [33]. However, the commonly used technique is to approximate

the term |∇u| by
√

|∇u|2 + β, where β is a small positive parameter, and the unconstrained

minimization problem (1.3) becomes

min
u

{

f(u) = α

∫

Ω

√

|∇u|2 + βdxdy +
1

2
‖Ku− z‖2

}

. (1.4)

It is shown in [1] that the solution of (1.4) converges to the solution of (1.3) when β → 0. The

corresponding Euler-Lagrange partial differential equation (PDE) for (1.4) is

g(u) = −α∇ ·
(

∇u
√

|∇u|2 + β

)

+K∗(Ku− z) = 0, (x, y) ∈ Ω, (1.5)

with homogeneous Neumann boundary condition ∂u/∂~n = 0, (x, y) ∈ ∂Ω. Here ∇· is the

divergence operator, K∗ is the adjoint operator of K with respect to the L
2 inner product, ∂Ω

is the boundary of Ω and ~n is the normal vector of ∂Ω. It should be remarked that even for

moderately small β, the Newton method does not converge with the common starting iterate

u = z; therefore, one cannot find any use of Newton type methods for this primal equation in

the literature.

Before we present a method to help the Newton method, we briefly review four categories

of methods for solving (1.5).

1) Gradient descent methods [24, 26]. As used in Rudin et al. [26], instead of the elliptic

PDE, a parabolic PDE with time as an evolution parameter is solved by the gradient descent

method

ut = N (u) ≡ α∇ ·
( ∇u
√

|∇u|2 + β

)

−K∗(Ku− z), u(x, y, 0) = z. (1.6)

An accelerated version is ut = |∇u|N (u) as first used by [24]. This method is preferred in

many situations for its simplicity, user-independent choice of regularize parameter and fast


