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Abstract

Adaptive finite element methods for optimization problems for second order linear el-

liptic partial differential equations subject to pointwise constraints on the `2-norm of the

gradient of the state are considered. In a weak duality setting, i.e. without assuming a

constraint qualification such as the existence of a Slater point, residual based a posteri-

ori error estimators are derived. To overcome the lack in constraint qualification on the

continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the

performance of the proposed error estimators.
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1. Introduction

In this paper we study the state constrained optimal control problem
minimize J(y, u) := 1

2‖y − yd‖
2
0,Ω + α

2 ‖u‖
2
U over (y, u) ∈ V × U

subject to Ay = u+ f in V ∗,

|∇y| ≤ ψ a.e. in Ω,

(P )

where Ω ⊂ Rn, n ∈ {1, 2, 3}, is an open, bounded domain with boundary Γ := ∂Ω, V := H1
0 (Ω),

U = L2(Ω), yd ∈ L2(Ω), α > 0, A : V → V ∗ denotes a self-adjoint second order linear elliptic

partial differential operator, f ∈ L2(Ω), and ψ ∈ L2(Ω) with ψ ≥ ψ a.e. in Ω for some ψ ∈ R++.

Here and below ‖·‖0,Ω refers to the standard L2(Ω)-norm. In (P ) we have ‖·‖U = ‖·‖0,Ω. We call

y the state and u the control. Of course, more general objective functionals are conceivable,

but our choice reflects the often considered tracking-type objective involving a desired state

yd, which may result from measurements, and control costs α. Moreover, convex quadratic
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102 M. HINTERMÜLLER, M. HINZE AND R.H.W. HOPPE

objectives and affine partial differential equation (PDE) constraints such as those in (P ) appear

naturally in sequential quadratic programming approaches in optimization.

Pointwise constraints on the gradient of the state, as imposed in (P ), are important, e.g.,

in material science in order to avoid large material stresses. Such stresses may arise from

unbalanced cooling regimes in transient phenomena and/or due to the geometric structure of

the underlying PDE domain. Usually large stresses cause adverse effects in the material leading

to reduced life time or other deterioration. Geometric features of the PDE domain such as cracks

or re-entrant corners play also a crucial role in stationary cases in elasticity, where stresses are

usually high at the crack tip or the re-entrant corner of, e.g., an L-shaped domain. Thus, it

might be desirable to exercise some control in order to reduce these potentially adverse effects.

Even in situations where the PDE domain is smooth, from an optimization theoretic point

of view pointwise constraints on the state lead to poor multiplier regularity when characteriz-

ing first order optimality by means of a Karush-Kuhn-Tucker (KKT) system. Corresponding

theoretical studies can be found in [7–9]. For the derivation of such a KKT-system it is com-

monly invoked that the feasible set of the optimization problem (like (P )) admits a so-called

Slater point. In connection with (P ), this requirement results in a function space setting of

V := W 2,r(Ω) ∩H1
0 (Ω), with r > n, for the state space and U := Lr(Ω) for the control space.

This yields ∇y ∈ C(Ω̄)n which is needed for the existence of a Slater point.

For pointwise constraints on the gradient and less regular domains (like cracked domains

or L-shapes) such a high regularity of the state is out of reach [14]. Hence, the derivation of

a primal-dual first order optimality characterization cannot rely on standard tools requiring

a constraint qualification such as the existence of a Slater point. As a consequence, one may

need to work under a weaker first order condition, i.e., without a bounded set of multipliers

associated with |∇y| ≤ ψ a.e. in Ω. We also note that the domain and the bound ψ have

to be compatible in order to yield a non-empty feasible set of (P ). For example, requiring

ψ ∈ L∞(Ω) in the presence of a crack, which, however, rules out L∞-regularity of the gradient

of the solution of our PDE with L2(Ω)-right-hand side, causes an incompatibility and, thus, an

empty feasible set. In such cases the optimization problem (P ) is void. Hence, throughout this

paper we assume that such a data compatibility holds true, i.e., we may assign a well-defined

solution operator G : V ∗ → V to the PDE in (P ).

Adaptive finite element methods have been widely and successfully used for the efficient

numerical solution of boundary and initial-boundary value problems for partial differential

equations; see, e.g., the monographs [1,3,4,13,23,26] and the many references therein. Recently,

residual based a posteriori as well as dual-weighted residual based goal oriented estimators for

PDE-constrained optimization problems with pointwise constraints on the control or the state

were studied; see, e.g., [5, 17–19, 21, 22, 27]. Concerning constraints on the gradient of the

state, however, the present literature is rather scarce; here we refer to recent a priori estimates

in [11] based on a certain mixed finite element approach, and to [15]. Compared to pointwise

constraints on the state, i.e., y ≤ Ψ a.e. in Ω, gradient constraints involve the gradient operator,

which has a non-trivial kernel, and require very smooth, i.e. C1(Ω̄), states in order to guarantee

a constraint qualification, such as the existence of a Slater point. Both aspects trouble the

existence of a bounded set of Lagrange multiplier with the latter preventing practically relevant,

non-smooth PDE domains, as pointed out above. This also has an immediate effect in the a

posteriori error analysis as one has to avoid explicit use of a Lagrange multiplier.

In the present paper we are, thus, interested in developing reliable residual based a posteriori

error estimators for an adaptive finite element discretization of (P ). In particular we study the


