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Abstract

A spectral collocation method is proposed to solve Volterra or Fredholm integral equa-

tions with weakly singular kernels and corresponding integro-differential equations by

virtue of some identities. For a class of functions that satisfy certain regularity condi-

tions on a bounded domain, we obtain geometric or supergeometric convergence rate for

both types of equations. Numerical results confirm our theoretical analysis.
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1. Introduction

Given 0 < µ < 1, we consider two classes of linear Volterra type integral equations of the

form

y(t)−
∫ t

0

(t− s)−µy(s)ds = b(t), t ∈ (0, T ], (1.1)

and of the form (Fredholm)

y(t)−
∫ T

0

|t− s|−µy(s)ds = b(t), t ∈ (0, T ], (1.2)

where y(t) is the unknown function and b(t) is a sufficiently smooth function. We also consider

the corresponding integro-differential equations

y′(t) = a(t)y(t) +

∫ t

0

(t− s)−µy(s)ds+ b(t), y(0) = y0, t ∈ (0, T ], (1.3)

and

y′(t) = a(t)y(t) +

∫ T

0

|t− s|−µy(s)ds+ b(t), y(0) = y0, t ∈ (0, T ], (1.4)
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where y(t) is the unknown function, a(t) is an analytic function, and b(t) is a sufficiently smooth

function. We assume that each of these equations possesses a unique solution [9, 21].

Numerical approximation of integral equations with singular kernel has caught numerous

attentions, among which extensive studies can be found in [1, 10] while numerical solutions of

integro-differential equation are studied in [2,12,18] etc. Many numerical analysts used graded

meshes to develop numerical schemes with an optimal order of convergence, see, e.g., [1,9,11,12].

A hybrid collocation method was also proposed to solve Volterra equations with weakly singular

kernels [5] and Fredholm singular equations [3,4]. Recently, in [6,7] a spectral Jacobi-collocation

method was proposed and analyzed to solve Volterra equations. The basic idea is to collocate

equations at some Jacobi points and use a highly accurate quadrature to approximate the

integration in (1.1). In this article, however, instead of numerical integration, we apply exact

integration to the composition of the Legendre polynomials and the weakly singular kernel. The

exact integration leads to a more accurate solution and reduces the computation cost. It will

be shown that a geometric (supergeometric) rate of convergence can be achieved by using our

method if y(t) satisfies condition (R): ‖y(k)‖L∞[0,T ] ≤ Ck!R−k (condition (M): ‖y(k)‖L∞[0,T ] ≤
CMk,M > 0) not only for Volterra equations but also for Fredholm equations as well as their

corresponding integro-differential equations. Here, R is sufficiently large. If R is small, an

hp-version of our method is necessary. For a Volterra equation, if the solution is not smooth

enough we may take some function transformations as in [7] to obtain a new equation which

possesses better regularity.

In the traditional analysis of spectral methods, the error bound is given in the form O(p−k)

for any positive integer k, where p is the polynomial degree. This is to say that the convergence

is superior to any polynomial rate as long as the exact solution is in C∞. Nevertheless, it is still

not geometric convergence in its precise sense. The fundamental difference of our analysis here

is that we establish a convergence rate in the form O(e−σp) = O(R−p) (geometric convergence)

or O(e−σp(ln p−lnγ)) = O((γ/p)
σp
) (super-geometric convergence). For the former, we need

condition (R) on the exact solution, and for the later we need condition (M), a more restricted

assumption.

Let us elaborate some more on those two conditions. Actually, condition (R) is the ana-

lytic assumption. Based on the Cauchy integral formulae, an analytic function f , and its kth

derivative f (k), can be expressed as,

f(z) =
1

2πi

∫

Γ

f(w)

w − z
dw, f (k)(z) =

k!

2πi

∫

Γ

f(w)

(w − z)k+1
dw,

in its analytic regionD with boundary Γ. Condition (M) characterizes a class of entire functions.

Typical candidates are sinMz, cosMz, eMz and their combinations. For more details, see the

discussion in [20].

We see that both conditions are very restricted and satisfied only in special situations, such

as when the singular kernel is replaced by a smooth kernel k(t, s) (or µ = 0) and input data a, b

are analytic functions. Nevertheless, our numerical schemes is still valid for problems with the

singular kernel discussed in this paper, even though the associated analysis for solutions with

singularity is lacking. We would emphasis that the spectral method is particularly efficient for

equations with sufficiently smooth solutions. Regarding supergeometric convergence of spectral

collocation method for differential equations, readers are referred to [19, 20].

This paper is organized as follows: In Sections 2, some preliminary knowledge as well as

algorithms for both types of integral equations are given. In Section 3, convergence analysis


