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Abstract

We derive new and tight bounds about the eigenvalues and certain sums of the eigen-

values for the unique symmetric positive definite solutions of the discrete algebraic Riccati

equations. These bounds considerably improve the existing ones and treat the cases that

have been not discussed in the literature. Besides, they also result in completions for the

available bounds about the extremal eigenvalues and the traces of the solutions of the

discrete algebraic Riccati equations. We study the fixed-point iteration methods for com-

puting the symmetric positive definite solutions of the discrete algebraic Riccati equations

and establish their general convergence theory. By making use of the Schulz iteration

to partially avoid computing the matrix inversions, we present effective variants of the

fixed-point iterations, prove their monotone convergence and estimate their asymptotic

convergence rates. Numerical results show that the modified fixed-point iteration methods

are feasible and effective solvers for computing the symmetric positive definite solutions of

the discrete algebraic Riccati equations.

Mathematics subject classification: 15A15, 15A18, 15A24, 15A48, 65F30.

Key words: Discrete algebraic Riccati equation, Symmetric positive definite solution,

Eigenvalue bound, Fixed-point iteration, Convergence theory.

1. Introduction

Consider the discrete algebraic Riccati equation (DARE)

X = ATXA−ATXB(G+BTXB)−1BTXA+ CTC, (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and G ∈ Rm×m are given matrices, and the matrix

G is assumed to be symmetric and positive definite. Let

R = BG−1BT and Q = CTC. (1.2)

Then by applying the Sherman-Morrison-Woodbury formula [10, P. 50], the DARE (1.1) can

be equivalently reformulated as

X = ATX(I +RX)−1A+Q,
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where I represents the identity matrix of appropriate size, and R and Q are the matrices defined

in (1.2) satisfying R � 0 and Q � 0. Here and in the sequel, for a square matrix W we say

W ≻ 0 (or W � 0) if W is symmetric positive definite (or symmetric positive semidefinite).

Throughout the paper we assume that (A,B) is a stabilizable pair and (A,C) is a detectable

pair 1) . Then the DARE (1.1) has a unique symmetric positive definite solution X such that

the matrix (I +RX)−1A is stable, i.e., every eigenvalue λ of the matrix (I +RX)−1A satisfies

|λ| < 1; see, e.g., [24, 44]. Under this assumption, the DARE (1.1) can be further rewritten in

the symmetric form as

X = AT (X−1 +R)−1A+Q. (1.3)

In this paper, we will focus on discussions about the discrete algebraic Riccati equations of the

form (1.3).

The discrete algebraic Riccati equation (1.1) arises in many areas of engineering applications

such as the optimal control design [21] and the filter design [2]. One typical and important

application about the DARE (1.1) is the discrete-time LQ-problem in optimal control. Under

the assumption that the matrix pairs (A,B) is stabilizable and (A,C) is detectable, the discrete-

time linear system

{
xk+1 = Axk +Buk, x0 given,

yk = Cxk, k = 0, 1, 2, · · · ,

exists an optimal control uk, which is the minimizer of the quadratic cost functional

J =

∞∑

k=0

(
xTkQxk + uTkGuk

)
.

Then uk can be recovered via xk by

uk = −(G+BTXB)−1BTXAxk, k = 0, 1, 2, · · · ,

where X is the unique symmetric positive definite solution of the DARE (1.1). We remark

that when the above-mentioned linear system is subjected to perturbations, uncertainties, ad-

ditive/multiplicative noises or a time delay, the DARE (1.3) may be appropriately modified

and is often impossible to be solved exactly.

An accurate estimate about the solution of the DARE (1.3) or, equivalently, the DARE (1.1),

is theoretically important and practically useful when we treat some control problems such as the

stabilized control design for time-delay systems [29], the stability analysis in the presentations

of time delay and perturbations [43], and the state and error covariance estimation [20], as well

as when we select feasible starting points for certain iteration methods employed to solve the

discrete algebraic Riccati equations.

In fact, a bound for the solution X of the DARE (1.3) can be provided through a bound on

the eigenvalues λi(X) of X . Various bounds about the extreme eigenvalues [9], the partial sum

and the partial product of eigenvalues [17, 19], the trace [13, 22, 38], and the determinant [42]

of the solution X have been derived during the past three decades; see [23, 37] for excellent

1) For a complex constant λ and vector w, if w∗B = 0 and w∗A = λw∗ imply either |λ| < 1 or w = 0, then the

matrix pair (A,B) is called stabilizable. The matrix pair (A,C) is called detectable if (AT , CT ) is stabilizable.

Here, (·)T and (·)∗ denote the transpose and the conjugate transpose of either a complex vector or a complex

matrix, respectively.


