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Abstract

We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solv-

ing large sparse continuous Sylvester equations with non-Hermitian and positive definite/semi-

definite matrices. The unconditional convergence of the HSS iteration method is proved

and an upper bound on the convergence rate is derived. Moreover, to reduce the com-

puting cost, we establish an inexact variant of the HSS iteration method and analyze its

convergence property in detail. Numerical results show that the HSS iteration method

and its inexact variant are efficient and robust solvers for this class of continuous Sylvester

equations.
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1. Introduction

We consider iterative solutions of the continuous Sylvester equations of the form

AX +XB = F, (1.1)

where A ∈ C
m×m, B ∈ C

n×n and F ∈ C
m×n are given complex matrices. Assume that

(A1) A, B and F are large and sparse matrices;

(A2) at least one of A and B is non-Hermitian; and

(A3) both A and B are positive semi-definite, and at least one of them is positive definite.

Then from [14,29,31] we know that the continuous Sylvester equation (1.1) has a unique solution,

as under the assumptions (A1)-(A3) there is no common eigenvalue between A and −B. Note

that the continuous Lyapunov equation is a special case of the continuous Sylvester equation

with B = A∗ and F Hermitian. Here and in the sequel, W ∗ is used to denote the conjugate

transpose of the matrix W ∈ C
m×m, and we call W a positive definite or positive semi-definite

matrix if so is its Hermitian part H(W ) := 1
2 (W +W ∗); note that a positive definite or positive

semi-definite matrix is not necessarily Hermitian. We will also use S(W ) := 1
2 (W − W ∗) to

denote the skew-Hermitian part of the matrix W . Obviously, it holds that W = H(W )+S(W );

see [2–6].
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The continuous Sylvester equation (1.1) has numerous applications in control and system

theory [30,36,39], stability of linear systems [22], analysis of bilinear systems [32], power systems

[25], linear algebra [16], signal processing [1], image restoration [11], filtering [21, 23], model

order reduction [35], numerical methods for differential equations [8, 9], iterative methods for

algebraic Riccati equations [7,18–20,30], matrix nearness problem [34,41], finite element model

updating [13,26], block-diagonalization of matrices [16,31] and so on. Many of these applications

lead to stable Sylvester equations, i.e., Assumption (A3) made in the above is satisfied.

The continuous Sylvester equation (1.1) is mathematically equivalent to the system of linear

equations

Ax = f, (1.2)

where A = I ⊗ A + BT ⊗ I, and the vectors x and f contain the concatenated columns of

the matrices X and F , respectively, with ⊗ being the Kronecker product symbol and BT

representing the transpose of the matrix B. Of course, this is a numerically poor way to

determine the solution X of the continuous Sylvester equation (1.1), as the system of linear

equations (1.2) is costly to solve and can be ill-conditioned.

Standard methods for numerical solution of the continuous Sylvester equation (1.1) are the

Bartels-Stewart and the Hessenberg-Schur methods [10, 15], which consist in transforming A

and B into triangular or Hessenberg form by an orthogonal similarity transformation and then

solving the resulting system of linear equations directly by a back-substitution process. These

methods are classified as direct methods and are used, among others, by LAPACK and Matlab.

When the matrices A and B are large and sparse, iterative methods such as the Smith’s

method [37], the alternating direction implicit (ADI) method [11,24,33,40], the block successive

overrelaxation (BSOR) method [38], the preconditioned conjugate gradient method [12], the

matrix sign function method [27], and the matrix splitting methods [17] are often the methods

of choice for efficiently and accurately solving the continuous Sylvester equation (1.1).

The Bartels-Stewart and the Hessenberg-Schur methods are applicable and effective for

general continuous Sylvester equations of reasonably small sizes. For large and sparse continuous

Sylvester equations, the afore-mentioned iterative methods are often superior to these direct

methods, provided the matrices A and B are either Hermitian positive definite matrices or

M -matrices. However, when the matrix A or B is not Hermitian, the convergence of these

iterative methods may be theoretically not guaranteed, even if both matrices A and B are

either asymptotically stable or N -stable (i.e., positive definite); this will be the case if the

skew-Hermitian part of A or B is dominantly strong.

In this paper, we present an iterative method for solving the continuous Sylvester equa-

tion (1.1) by making use of the Hermitian and skew-Hermitian (HS) splittings of the matrices

A and B. This Hermitian and skew-Hermitian splitting (HSS) iteration method is a matrix

variant of the HSS iteration method firstly proposed in [6] for solving systems of linear equa-

tions, which are in spirit analogous to the ADI iteration methods [11, 24, 33, 40]. Via the HSS

iteration method, the problem of solving a general continuous Sylvester equation is decom-

posed into a sequence of sub-problems about two coupled continuous Sylvester equations with

respect to shifted Hermitian positive definite matrices and shifted skew-Hermitian matrices,

respectively. When the matrices A and B are positive semi-definite, and at least one of them

is positive definite, we prove that the HSS iteration converges unconditionally to the exact so-

lution of the continuous Sylvester equation (1.1), with a bound on the convergence rate about

the same as that of the conjugate gradient method when applied to a continuous Sylvester


