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Abstract

This paper is concerned with the finite element method for nonlinear Hamiltonian

systems from three aspects: conservation of energy, symplicity, and the global error. To

study the symplecticity of the finite element methods, we use an analytical method rather

than the commonly used algebraic method. We prove optimal order of convergence at

the nodes tn for mid-long time and demonstrate the symplecticity of high accuracy. The

proofs depend strongly on superconvergence analysis. Numerical experiments show that

the proposed method can preserve the energy very well and also can make the global

trajectory error small for long time.
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1. Introduction

We consider the nonlinear Hamiltonian systems

zt = −JHz, z(0) = z0, (1.1)

where

Hz =

(

Hp

Hq

)

, J =

(

0 In
−In 0

)

, (1.2)

z = (p, q)T = (p1, · · · , pn; q1, · · · , qn)T , H(z) = H(p, q) is a real-valued smooth function and

J is a skew-symmetric matrix of order 2n. Obviously, JT = J−1 = −J, J2 = −I2n. In

application, the Hamiltonian H(z) is often the total energy. Hamiltonian systems have two

important properties: conservation and symplecticity. These properties are the hallmark of

Hamiltonian systems.
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Symplectic geometry in phase space R2n is the mathematical foundation to study Hamil-

tonian systems. Let x = (x1, · · · , xn, xn+1, · · · , x2n)
T ∈ R2n. Then symplectic structure is

defined by a skew-symmetric bilinear inner product

[x, y] = (x, Jy) =

n
∑

j=1

(xjyn+j − xn+jyj), x, y ∈ R2n. (1.3)

Hence [x, x] = (x, Jx) = 0. In the symplectic space, a linear operator A is symplectic iff

AT JA = J . All solutions z(t) of (1.1) form a symplectic group with one-parameter. These

solutions have an important symplecticity property (see Section 5)

(

Dz(t)

Dz0

)T

J

(

Dz(t)

Dz0

)

= J, 0 ≤ t < ∞. (1.4)

Moreover, multiplying Eq. (1.1) by J and zt, we have the energy conservation

0 =

∫ t

0

J(zt + JHz)ztdt = −
∫ t

0

Hzztdt = −H
(

z(t)
)

∣

∣

∣

t

0
. (1.5)

It is important to construct discrete algorithms which preserve these basic properties. Ruth

[1] and Feng [2] have originally proposed the sympletic geometry algorithms which preserve the

global symplectic structure and have tracking ability over long times. Feng and his co-authors

then published several important works afterwards, see, e.g., [3-6]. Later on many symplectic

schemes are studied by Chinese scholars, such as the partitioned algorithm (Sun [7]), multi-step

algorithm (Tang [8]), volume-preserving algorithm (Shang [10,11]). Recent work can be found

in [9,12,21] and a review [14].

Under the influence of Feng’s work, several new symplectic algorithms are developed. For

example, the symplectic Runge-Kutta method (SRK) is proposed by Sanz-Serna, Lasagni and

Suris (see [15-18]). Later on the symplectic algorithms are also generalized to deal with partial

differential systems.

Many scholars pointed out that the energy conservation is more important at certain times,

see, e.g., Stuart et al. [19] (pp.583-584,642-644) and Hairer et al. [20] (p.12). So we turn

to the finite element method (FEM). It is found that the continuous FEM always preserves

the energy, and is approximately symplectic [22,23]. FEM is an exact orthogonal projection,

which makes it possible to explore its refined properties, such as superconvergence, long-time

error, approximate symplecticity and so on. These properties describe another kind of the

structure different from the symplectic algorithms. Besides, the spectrum algorithm is also an

orthogonal projection, see Tang and Xu [13]. It should be pointed out that the symplectic

collocation method and SRK are equivalent under some conditions (see [20], p.27), which may

be considered to be the approximately orthogonal projection based on some fixed quadrature.

This quadrature makes the symplectic collocation method and SRK to possess the symplecticity,

and to approximately preserve the energy. Therefore it is suggested that both SRK and FEM

belong to the same setting of the orthogonal projection, but only with different quadratures.

In Table 1.1, we compare three properties of three algorithms: SFD (symplectic finite differ-

ence algorithm), SRK (symplectic Runge-Kutta method), and FEM (continuous finite element

method).

In addition to preserving the symplecticity and energy, there is a third criterion to evalu-

ate an algorithm, i.e., small deviations of computational trajectory after long times, which is

possibly more important in applications. We now give a proposition as follows:


