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Abstract

A combined approximation for a kind of compressible miscible displacement problems

including molecular diffusion and dispersion in porous media is studied. Mixed finite el-

ement method is applied to the flow equation, and the transport one is solved by the

symmetric interior penalty discontinuous Galerkin method (SIPG). To avoid the inconve-

nience of the cut-off operator in [3,21], some induction hypotheses different from the ones

in [6] are used. Based on interpolation projection properties, a priori hp error estimates

are obtained. Comparing with the existing error analysis that only deals with the diffusion

case, the current work is more complicated and more significant.
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1. Introduction

We consider the following single-phase, miscible displacement problem of one compressible

fluid by another in porous media:

d(c)
∂p

∂t
+∇ · uuu = d(c)

∂p

∂t
−∇ · (a(c)∇p) = q, (x, t) ∈ Ω× J, (1.1)

φ
∂c

∂t
+ b(c)

∂p

∂t
+ uuu · ∇c−∇ · (DDD(uuu)∇c) = (ĉ− c)q, (x, t) ∈ Ω× J, (1.2)

uuu · nnn = 0, (x, t) ∈ ∂Ω× J, (1.3)

DDD(uuu)∇c ·nnn = 0, (x, t) ∈ ∂Ω× J, (1.4)

p(x, 0) = p0(x), x ∈ Ω, (1.5)

c(x, 0) = c0(x), x ∈ Ω, (1.6)

where Ω is a polygonal and bounded domain in R
n (n = 1, 2 or 3) with boundary ∂Ω, J = (0, T ],

nnn denotes the unit outward normal vector to ∂Ω; uuu(x, t) represents the Darcy velocity of the

mixture and p(x, t) is the fluid pressure in the fluid mixture; c(x, t) is the solvent concentration

of interested species measured in amount of species per unit volume of the fluid mixture, φ(x)
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is the effective porosity of the medium and is bounded above and below by positive constants,

DDD(uuu) denotes a diffusion or dispersion tensor which has contributions from molecular diffusion

and mechanical dispersion. Moreover,

DDD(uuu) = dmIII + |uuu|
(
αlEEE(uuu) + αt

(
III −EEE(uuu)

))
,

where EEE(uuu) is the tensor that projects onto the uuu direction, whose (i, j) component is

(EEE(uuu))i,j =
uiuj
|uuu|2

;

dm is the molecular diffusivity and is assumed to be strictly positive; αl and αt are the longitu-

dinal and transverse dispersion respectively, and are assumed to be nonnegative. The imposed

external total flow rate q is a sum of sources and sinks. That is to say, q = q+ + q−, where

q+ = max(q, 0) and q− = min(q, 0). q and ∂q
∂t are assumed to be bounded. The notation ĉ is

the specified injected concentration cw at sources if q > 0 and is the resident concentration c

at sinks if q < 0. We assume that p, ∇p, c and ∇c are essentially bounded.

The coefficients a(c), b(c) and d(c) are defined as:

a(c) =
k(x)

µ(c)
, b(c) = φ(x)c1(z1 − z1c1 − z2c2), d(c) = φ(x)(z1c1 + z2c2),

where c = c1 = 1 − c2, µ(c) represents the viscosity, zj denotes the constant compressibility

factor for the jth component (j = 1, 2), k(x) is the permeability of the medium. a(c) and d(c)

have positive lower and upper bounds,

0 < a∗ < a(c) < a∗ and 0 < d∗ < d(c) < d∗,

b(c) is bounded. In addition, ∂a(c)
∂c is uniformly bounded and Lipschitz continuous with respect

to c.

It is well known that the mixed finite element (MFE) method can obtain the same optimal

order of convergence for both the pressure and the Darcy velocity and has been widely used in

the numerical simulation for porous media problems [8–10].

Recently, M. F. Wheeler, B. Rivière and S. Sun have devoted to using discontinuous Galerkin

(DG) solver for problems in porous media [16,20]. V. Dolejsi and M. Feistauer, have investigated

DG approximation for convection-diffusion problems (see [7, 12, 13]). DG methods belong to

a class of non-conforming methods (see [3, 5, 15, 18, 23–25] ) and they solve the differential

equations by piecewise polynomial functions over a finite element space without any requirement

on inter-element continuity – however, continuity on inter-element boundaries together with

boundary conditions is weakly enforced through the bilinear form. DG is very attractive for

practical numerical simulations because of its physical and numerical properties. Firstly, it is

flexible which allows for general non-conforming meshes with variable degrees of approximation.

Secondly, it is locally mass conservative and the average of the trace of the fluxes along an

element edge is continuous. Thirdly, it has less numerical diffusion and can deal with rough

coefficient problems. Finally, it is easier for the hp-adaptivity because the information over cell

boundaries is almost decoupled.

To approximate to the exact solution of (1.1)–(1.6), we shall make use of a combined mixed

finite element and DG method.

Many scholars have contributed to numerical approximations to miscible displacement prob-

lems [4, 14]. Unfortunately, there are very few literature dealing with DG methods. In [21] a


