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Abstract

A fully discrete finite difference scheme for dissipative Klein–Gordon–Schrödinger equa-

tions in three space dimensions is analyzed. On the basis of a series of the time-uniform

priori estimates of the difference solutions and discrete version of Sobolev embedding the-

orems, the stability of the difference scheme and the error bounds of optimal order for the

difference solutions are obtained in H2 × H2 × H1 over a finite time interval. Moreover,

the existence of a maximal attractor is proved for a discrete dynamical system associated

with the fully discrete finite difference scheme.
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1. Introduction

Let Ω be a bounded domain in R3, we shall consider a finite difference approximation of
dissipative Klein–Gordon–Schrödinger (KGS) equations [1]

iψt + ∆ψ + iαψ + φψ = F, in Ω, t > 0 (1.1a)

φtt + βφt −∆φ + µ2φ = |ψ|2 + G, in Ω, t > 0 (1.1b)

with boundary condition
(ψ, φ)|∂Ω = 0, t > 0, (1.2)

and initial conditions
(ψ, φ, φt)(x, 0) = (ψ0, φ0, φ1)(x), in Ω, (1.3)

where ψ and φ represent a complex scalar neucleon field and a real meson field respectively, α,
β and µ2 are positive constants, F and G are given complex and real functions, respectively.

It is convenient to reduce (1.1) to an evolution equation of the first order in time. For this
purpose, let ε > 0 be a fixed constant, satifying ε ≤ min

(
β/2, µ2/β

)
. We introduce θ = φt +εφ.
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Then the problem (1.1)–(1.3) is equivalent to the following problem

iψt + ∆ψ + iαψ + φψ = F, in Ω, t > 0, (1.4a)

φt + εφ− θ = 0, in Ω, t > 0, (1.4b)

θt + (β − ε)θ +
(
µ2 − ε(β − ε)−∆

)
φ = |ψ|2 + G, in Ω, t > 0, (1.4c)

with boundary conditions
(ψ, φ, θ)|∂Ω = 0, t > 0, (1.5)

and initial conditions
(ψ, φ, θ)(x, 0) = (ψ0, φ0, θ0)(x), in Ω. (1.6)

In the conservative case, i.e., α = β = 0, F = G = 0, the system has been studied by many
authors, see, e.g., [2, 3, 5, 13] and so on. In the dissipative case (α > 0, β > 0), the long time
behavior of infinite dimensional dynamical system S(t) associated with the initial boundary
value problem (1.1)–(1.3) has been studied in [1, 4, 9]. Biler [1] proved that the maximal
attractor A exists in the weak topology of H1

0 (Ω)×H1
0 (Ω)×L2(Ω), which has finite Hausdorff

and fractal dimension. Li [9] proved the existence of finite dimensional maximal attractor in
the topology of H2(Ω) ∩H1

0 (Ω)×H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω).
At the same time, in numerical simulation of the continuous dynamical system, we are

interested in study of the dynamical properties of the discrete dynamical system associated
with the numerical scheme for problem (1.1). It is important that the discrete dynamical
system can remain some properties of the continuous dynamical system such as dissipatedness.
It is our purpose in this paper to consider a discrete dynamical system associated with the fully
discrete finite difference scheme for problem (1.4)–(1.6). It will be proved that for each mesh
size, the discrete dynamical system also possesses a maximal attractor. A similar problem was
studied by many authors, see, e.g., [7, 11, 12, 14, 15].

The rest of this paper is organized as follows. After introducing some notations, in Sect. 2
we give several embedding theorems and interpolation inequalities for discrete functions, which
are the analogues of embedding theorems and interpolation inequalities for the Sobolev space
Wm,p(Ω). In Sect. 3, a fully discrete finite difference scheme is established for problem (1.4)
with the homogeneous Dirichlet boundary condition (1.5). The existence of the solutions of
the fully discrete finite difference scheme is proved by using the Leray-Schauder fixed point
theorem. Then we establish some uniform bounds of the solutions in suitable norms. In Sect.
4, we obtain the stability and the convergence properties for the finite difference scheme over
a finite time interval (0, T ]. Finally, in Sect. 5, by regarding the fully discrete finite difference
scheme as a discrete dynamical system Sh,∆t(tn) that is an approximation of the dynamical
system S(t), and by using the results in Sections 3 and 4, we prove the existence of an absorbing
set and an attractor for the discrete dynamical system Sh,∆t(tn).

2. Some Notations and Lemmas

Assume that the domain Ω is the three-dimensional rectangular domain (0, l1) × (0, l2) ×
(0, l3), where li (i = 1, 2, 3) are positive constants. Let us divide the domain Ω into small grids
by the parallel planes x = ih1 (0 ≤ i ≤ J1), y = jh2 (0 ≤ j ≤ J2) and z = kh3 (0 ≤ k ≤ J3),
where h1, h2, h3 are the spatial mesh lengths, J1, J2, J3 are positive integers, and Jihi = li
(i = 1, 2, 3). Let ψh, φh, uh, vh, · · · denote complex-valued or real-valued discrete functions


