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Abstract

We build finite difference schemes for a class of fully nonlinear parabolic equations.

The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes,

a wide class of equations are well approximated by equations from this class. For regular

(C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of

O(α). A case study along with supporting numerical results is included.
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1. Introduction

Although the theory of viscosity solutions has been well established for a broad class of
nonlinear elliptic and parabolic equations, there are no general methods available for building
convergent difference schemes to solve these equations. Schemes need to be custom built for
each equation, or for classes of equations.

For degenerate, quasilinear equations such as motion of level sets by mean curvature, and the
infinity Laplace equations, specialized convergent schemes have been build [13,14]. Convergent
schemes have been built for the class of equations which are functions of the eigenvalues of
the Hessian [16]. In general, these schemes requires successively wider stencils in order to
converge. This means that the approximation error depends on an additional parameter, dθ,
the directional resolution. In practice, schemes of width one or two are sufficient, since the dθ
error is small compared to the spatial resolution error.

In this article, we focus on the particular subclass of polyhedral grid aligned equations. The
subclass is artificial: it is designed for the purpose of building convergent schemes. However,
many of the previously mentioned equations can be approximated by this class. We build con-
vergent schemes, and establish error estimates, which depend on the regularity of the solutions.

Related results

Convergence rates for second order elliptic and parabolic equations, without any regularity
assumptions, are obtained in example Krylov [8,11], Kuo and Trudinger [12], Barles and Jacob-
sen [1], and Caffarelli and Souganidis [5] and the references therein. The methods used come
from regularity theory for nonlinear elliptic PDEs and are substantially more technical than
the methods herein.

Here we obtain convergence rates using available regularity results. This approach simplifies
the argument considerably, since it avoids a reiteration of the regularity theory.
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The remainder of this section recalls the setting for our nonlinear parabolic equations and the
necessary regularity results.

Section 2 is a case study with a simple example equation. Error estimates are obtained
directly in this simpler setting, and supporting numerical results are presented.

The first part of section 3 recalls general results on nonlinear elliptic schemes. The second
part presents new material on error estimates in terms of the residual for perturbed equations,
the methods of lines, and finally for fully discrete difference schemes.

The main results are in the section 4. Here the class of schemes is established. The schemes
are shown to be elliptic, and consistent, which is enough to prove convergence. Then the error
estimates of the previous section are used to obtain a convergence rate.

1.1. Nonlinear parabolic equations

Our results concern the fully nonlinear parabolic Partial Differential Equation (PDE)

ut(x, t) + F [u](x, t) = 0, for (x, t) in Ω× [0, T ) (PDE)

where Ω is a domain in Rn, along with initial and boundary conditions{
u(x, t) = g(x, t), for (x, t) on Ω× {0}
u(x, t) = h(x, t), for (x, t) on ∂Ω× (0, T ).

(BC)

The fully nonlinear elliptic partial differential operator F [u] is given by

F [u](x) ≡ F (D2u(x), Du(x), u(x), x). (1.1)

Here Du and D2u denote the gradient and Hessian of u, respectively. The function F (X, p, r, x)
is defined on Sn × Rn × R× Ω, and Sn is the space of symmetric n× n matrices. The natural
setting for equations of this type is viscosity solutions [7].

Definition 1.1. The differential operator (1.1) is nonlinear or degenerate elliptic if

F (N, p, r, x) ≤ F (M,p, s, x) whenever r ≤ s and M ≤ N. (1.2)

Here M ≤ N means that M−N is a nonnegative definite symmetric matrix. The corresponding
parabolic operator (PDE) is called nonlinear or degenerate parabolic.

1.2. Regularity

When the equation F is convex and uniformly parabolic, solutions of (PDE) are C2,α,
[17,18]. These results build upon the elliptic regularity [4,9]. In two dimensions and for special
nonconvex equations, more regularity is available [3].

Here we use the convention of [10], where C2,α means C2,α in x and C1,α/2 in t.

Remark 1.1. It is often the case (for both theory and numerics) that the time variable scales
quadratically with the space variable, as in [6] below.


