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Abstract

We propose and analyze a C° spectral element method for a model eigenvalue problem
with discontinuous coefficients in the one dimensional setting. A super-geometric rate of
convergence is proved for the piecewise constant coefficients case and verified by numerical
tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation
method and a spectral Galerkin method is established for a simplified model.
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1. Introduction

We often encounter eigenvalue problems with discontinuous coefficients in practice. Exam-
ples of such applications may be found in [11]. In this paper, we consider the following one
dimensional model problem: Find (\,u) € RT x H?(—m,m) such that

—u"(z) = Ae(x)u(x), u(—m) =u(r), u'(-7)=u'(n). (1.1)

Here ¢(z) > ¢p > 0 is a piecewise constant, or piecewise analytic function. The physics back-
ground of this model problem comes from the source-free Maxwell equations describing the
transverse-magnetic mode in the one-dimensional periodic media, where the function u rep-
resents the electric field pattern, and the dielectric function c¢(x) describes a unit cell from
a multilayer structure with 27-periodicity. This model problem was discussed by Min and

* Received March 18, 2009 / Revised version received May 5, 2009 / Accepted June 6, 2009 /
Published online February 1, 2010 /



Super-Geometric Convergence of a Spectral Element Method 419

Gottlieb in [11] where C* conforming spectral collocation methods were constructed on two
elements over
H., (—m,m) ={ve H(-m,7): v(-m)=uv(n), v'(-7) ='(7)},
and error bounds of type O(p~") were established. Note that the solution of (1.1) belongs to
Cl.
It would be interesting to discuss C° spectral element methods over

H), . (—m,m)={ve H (-mm): v(-m)=n(m},

per

since the construction of a C? spectral element method is much simpler than that of the global
C! spectral collocation method proposed in [11]. The idea of the spectral element can be
found, e.g., in an early work [12]. Note that the spectral element method is equivalent to the
so-called p-version finite element method, see e.g., [3]. Under the finite element variational
framework, we are able to prove a super-geometric error bound of type (’)(6_2”(10g p_”). In
some earlier works of the third author, the super-geometric error bound of type (’)(e"’(log”_”)
has been established for some spectral/collocation approximations of the two-point boundary
problem [17,18]. Our error bound for the eigenvalue approximation “doubles” the error bound
for the associated eigenfunction approximation, the fact we have known for the h-version finite
element method. It is worthy to point out that in the literature of the spectral method, it
is a common practice to consider error bounds of type O(p~™), see, e.g., [5-7,10,15,16], and
reference therein. To the best of our knowledge, this is the first time that a super-geometric
convergence rate is established for the eigenvalue approximation by the spectral method.

2. Theoretical Setting

The variational formulation of (1.1) is to find (A, u) € R* x H}

per

(—m, ) such that
(u',0") = Acu,v), Vv € Hp,, (—m,m). (2.1)
In this paper, we also consider the Dirichlet problem
—u"(x) = Ae(z)u(z), u(0) =0 = wu(1).
Its variational formulation is to find (A, u) € R* x H{(0,1) such that
(u',v") = Meu,v), Vv € Hg(0,1). (2.2)

By the general theory [2, 8], both problems (2.1) and (2.2) have countable infinite sequence of
eigen-pairs (\;, u;) satisfying

0< A <A< A3 < — o0, (uj, uf) = Aj(cus, uj) = Xjdij.

Furthermore, eigenvalues can be characterized as extrema of the Rayleigh quotient R(u) =
(v, u’)/(cu,u) as follows
A =inf =R
L= el = ),

A = inf R(u) = R(ug), k=2,3,...,
u€es, (u' })=0,j=1,....k—1



