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Abstract

We study a time domain decorrelation method of source signal separation from convo-

lutive sound mixtures based on an infinite impulse response (IIR) model. The IIR model

uses fewer parameters to capture the physical mixing process and is useful for finding

low dimensional separating solutions. We present inversion formulas to decorrelate the

mixture signals and derive filter equations involving second order time lagged statistics of

mixtures. We then formulate an l1 constrained minimization problem and solve it by an it-

erative method. Numerical experiments on recorded sound mixtures show that our method

is capable of sound separation in low dimensional parameter spaces with good perceptual

quality and low correlation coefficient comparable to the known infomax method.
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1. Introduction

Blind source separation(BSS) methods aim to extract the original source signals from their
mixtures based on the statistical independence of the source signals without knowledge of the
mixing environment, see [3, 7, 10]. Realistic sound signals are often mixed through a media
channel, so the received sound mixtures are linear convolutions of the unknown sources and
the channel transmission functions. In other words, the observed signals are unknown weighted
sums of the signals and their delays. The length of delays or convolution is physically on the
order of thousands or more, and results in a complex high dimensional optimization problem.
Separating convolutive mixtures is a challenging problem, especially in realistic settings [5,6,9,
11,13].

Let us consider the mixing of two sources, with one source representing the foreground and
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the other the background source with possibly diffuse spectra. A standard mixing model is:

y1(t) =
Lm∑

k=1

a11
k s1(t + 1− k) +

Lm∑

k=1

a12
k s2(t + 1− k), (1.1)

y2(t) =
Lm∑

k=1

a21
k s1(t + 1− k) +

Lm∑

k=1

a22
k s2(t + 1− k), (1.2)

where si(t)’s (i = 1, 2) are the two source signals, yi(t)’s are the received mixtures, and the
mixing length Lm is large enough to approximate the physical mixing process [5,20]. The si(t)’s
are zero if t < 0. If Lm is finite, the summation contains finitely many terms in (1.1)–(1.2),
and the model is called a finite impulse response (FIR) model. The BSS problem is to recover
the sources and filter coefficients aij

k ’s from yi(t)’s, assuming the statistical independence of
the source signals si(t)’s at t > 0. Statistical independence approach is similar in spirit to
feature based filtering and decomposition in image analysis [4, 17, 18], and is applicable to
image separation as well [6]. Convolutive mixtures occur naturally for sounds.

As observed in [14, 20] and verified by direct calculation, the mixtures y1 and y2 can be
orthogonalized (decorrelated) by an explicit transform. Define w1 and w2 as:

w1(t) =
Lm∑

k=1

a22
k y1(t + 1− k)−

Lm∑

k=1

a12
k y2(t + 1− k), (1.3)

w2(t) =
Lm∑

k=1

−a21
k y1(t + 1− k) +

Lm∑

k=1

a11
k y2(t + 1− k), (1.4)

then w1(t) and w2(t) are independent of each other and contain only the information of in-
dependent sources s1 and s2 respectively. The proof of the independence of w1 and w2 will
be a special case of what we will present in the next section (setting B1(z) = 1 = B2(z) in
(2.4)–(2.5)). The proof also implies that if si’s are uncorrelated (E[si(t) sj(t − n)] = 0, i 6= j,
for any n), then the wi’s in (1.3)–(1.4) are uncorrelated as well.

In [14], a system of algebraic equations of aij
k ’s follows from the uncorrelation of wi’s, and

an optimization problem is formulated to compute aij
k ’s. However, the objective function is

quartically nonlinear and the support of the aij
k in k may be very large, rendering computation

expensive. To actually approach the physical impulse response, Lm can be as large as O(103) or
more. Let us denote this physical limit by Lp. On the other hand, numerical experiments [14]
indicate that there are lower dimensional solutions {aij

k , k = 1, 2, ..., Lm}, Lm ¿ Lp, that suffice
for a rather good separation. For example, in computing separation for three room recordings,
Lm = 50 is found to be effective [14]. Low dimensional separating solutions of similar dimensions
are also reported in [9] for an infomax method.

In [14], l1 norm is employed as a constraint to select solutions with sparse structures as a way
towards finding stable and low dimensional solutions. The sparsity from minimizing l1 norm
has been extensively studied recently in the context of compressive sensing and basis pursuits
(see [2, 8, 19, 21] and references therein). Use of l1 norm as a constraint is due to the scale
invariance of BSS problem and the need to minimize correlation (or independence). Resulting
sparseness appears new. In this paper, we study low dimensional BSS solutions by recasting


