
Journal of Computational Mathematics

Vol.28, No.2, 2010, 273–288.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2009.10-m2870

UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS
FOR SINGULARLY PERTURBED PROBLEMS*

Ying Chen

Department of Mathematics, University of California, Irvine, CA 92697, USA

Email: yingc@uci.edu

Min Huang

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Email: huang3@purdue.edu

Abstract

In this paper, we are concerned with uniform superconvergence of Galerkin methods

for singularly perturbed reaction-diffusion problems by using two Shishkin-type meshes.

Based on an estimate of the error between spline interpolation of the exact solution and

its numerical approximation, an interpolation post-processing technique is applied to the

original numerical solution. This results in approximation exhibit superconvergence which

is uniform in the weighted energy norm. Numerical examples are presented to demonstrate

the effectiveness of the interpolation post-processing technique and to verify the theoretical

results obtained in this paper.

Mathematics subject classification: 65L10, 65L60.

Key words: singularly perturbed, Hermite splines, Shishkin-type meshes, Interpolation

post-processing, Uniform superconvergence.

1. Introduction

In this paper, we consider the singularly perturbed two-point boundary value problem of
reaction-diffusion type. It is well-known that the solution of this problem exhibits singularities
at the boundary layers where singularities depend upon perturbation parameters. When the
problem is solved numerically, we must take this boundary layer behavior of the solution into
account in order to produce an approximate solution with high-order convergence. Shishkin
meshes are most commonly used meshes in numerical methods which include finite difference
methods and finite element methods (see, e.g., [9, 10, 12, 13] and references cited therein). In
[12,13], the finite element method on the standard Shishkin mesh (S-mesh) provided a numerical
solution with convergence rate which is almost optimal uniformly in the weighted energy norm.
Based on another Shishkin-type mesh, namely, the anisotropic mesh (A-mesh), Li [3] proved
an optimal order of uniform convergence for high-order reaction-diffusion problems. One of
the advantages of Shishkin-type meshes, broadly defined, is that they are piecewise equidistant
meshes. This structure of Shishkin-type meshes can be exploited and we show in this paper that,
when it is combined with the interpolation post-processing technique, uniform superconvergence
of numerical solution can be obtained.

Therefore, the main purpose of this paper is to obtain uniform superconvergence in the
weighted energy norm of the Galerkin method on S-mesh as well as on A-mesh for singularly
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perturbed reaction-diffusion problems. Previously, Zhang [14] investigated a superconvergence
phenomena of a finite element solution obtained on a modified Shiskin mesh for the second-order
singularly perturbed problems. The superconvergence estimate was given in a discrete weighted
energy norm in which the L2 norm of ∇(u− uh) is replaced by a p-point Gaussian quadrature
rule. In this paper, motivated by an estimate of the error between spline interpolation of
the exact solution and its numerical approximation, which is commonly known as superclose,
(see, e.g., [2, 4, 5]), we will apply the interpolation post-processing technique to the numerical
solution obtained by the Galerkin method. This generates a higher order approximation which
gives rise to uniform superconvergence in the weighted energy norm. It will be shown that
we may gain improvements in the order of convergence in the following way. For S-mesh,
the rate of convergence in the weighted energy norm is enhanced from the optimal order of
convergence up to a logarithmic factor and for A-mesh, the order of convergence improves
by one from the optimal. We point out that the superclose property mentioned above plays
a key role in establishing the superconvergence result presented in this paper. The idea of
superclose property was used to obtain numerical solution of different operator equations. For
one dimensional problem, we refer the reader to [3,8,12] and for two dimensional problems [6,7].
Also, we point out that fact that the idea of the interpolation post-processing technique has
been successfully used by several authors (see, [2,4,5]). Finally, we note that our current work
can be extended to two-dimensional reaction-diffusion problems as well as to other singularly
perturbed problems. These topics will be discussed in the forthcoming papers.

This paper is organized as follows. In section 2, we describe the Galerkin method on S-mesh
as well as on A-mesh for solving high-order reaction-diffusion problems. Section 3 is devoted
to a study of application of the interpolation post-processing technique. The post-processing
is applied to the original numerical solution of high-order reaction-diffusion problems. The
uniform superconvergence of the post-processed solution on S-mesh as well as on A-mesh is
subsequently obtained in the weighted energy norm. In section 4, we consider the second-order
reaction-diffusion problem. The superclose property of the approximate solution in the weighted
energy norm is derived by constructing a special interpolant. Based on this estimate, we use
the interpolation post-processing technique to achieve the uniform superconvergence property
of the numerical solution. Finally in section 5, two numerical examples are presented to confirm
the theoretical results obtained in the previous sections.

2. High-order Reaction-Diffusion Problems

We introduce in this section the Galerkin method on S-mesh as well as on A-mesh for
solving reaction-diffusion problems using Hermite splines. We begin with some notations. Set
N := {1, 2, ...}, N0 := {0, 1, ...} and Zn := {0, 1, ..., n− 1}. Let I := [0, 1] and T be a subinterval
of I. We denote by (·, ·)T the inner product in L2(T ) and by ‖ · ‖0,T for the associated norm
on L2(I). Let Hk(T ), k ∈ N, be the Sobolev spaces on T with the norm ‖ · ‖k,T defined by

‖v‖k,T =

{
k∑

i=0

∫

T

|v(i)(x)|2dx

}1/2

,

and the semi-norm | · |k,T defined by

|v|k,T =
{∫

T

|v(k)(x)|2dx

}1/2

.


