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Abstract

As an important model in quantum semiconductor devices, the Schrödinger-Poisson

equations have generated widespread interests in both analysis and numerical simulations

in recent years. In this paper, we present Gaussian beam methods for the numerical

simulation of the one-dimensional Schrodinger-Poisson equations. The Gaussian beam

methods for high frequency waves outperform the geometrical optics method in that the

former are accurate even around caustics. The purposes of the paper are first to develop

the Gaussian beam methods, based on our previous methods for the linear Schrödinger

equation, for the Schrödinger-Poisson equations, and then check their validity for this

weakly-nonlinear system.
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1. Introduction

The main purpose of this paper is to extend our Gaussian beam method [22], developed for
the linear Schrödinger equation, to the one-dimensional nonlinear Schrödinger-Poisson equa-
tions

iε∂tΨε = −ε2

2
∂xxΨε + V εΨε, x ∈ R, t ≥ 0, (1.1)

∂xxV ε = b(x)− c |Ψε(t, x)|2 , Eε = ∂xV ε, (1.2)

subject to the WKB initial condition

Ψε(0, x) = A0(x)eiS0(x)/ε. (1.3)

Here Ψε = Ψε(t, x) is the highly oscillatory wave function of wave length O(ε) (in the so-called
semiclassical regime where the re-scaled Plank constant ε is small). The electric potential V ε =
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V ε(t, x) interacts with the wave function Ψε in a self-consistent way through the Schrödinger
equation (1.1) and the Poisson equation (1.2). In the poisson equation (1.2), b(x) ≥ 0 denotes
the fixed positive charged background. The constant c could be ±1, corresponding to focusing
(‘+’) or defocusing (‘-’) potential respectively.

The Schrödinger-Poisson equations are a mean-field model for the linear N -particle Schrödinger
equation with Coulomb potential [6,7,13], which is based on the Pauli’s exclusion principle and
the molecular chaos assumption. It is widely used in quantum semiconductor devices model-
ing [36] and the quantum transport theory [1, 2].

The direct simulation of the Schrödinger-Poisson equations is expensive since the wave
length O(ε) is extremely small in the semiclassical regime. The standard time-splitting spectral
method [3,4,42] and its adaptive version [5] need the mesh size to be of O(ε) and the time step
to be of O(1) to capture the correct physical observables. The finite difference methods [34,35]
are even worse since the mesh size and the time step are restricted to be O(ε).

One efficient alternative approach is to study the semiclassical limit of the Schrödinger-
Poisson equations. When taking the rescaled Planck constant ε → 0 , one can derive the
Vlasov-Poisson equations [28,33,49] in the phase space

∂tf + ξ∂xf − ∂xV ∂ξf = 0 x, ξ ∈ R, t ≥ 0, (1.4)

∂xxV = b(x)− c

∫ ∞

−∞
f(t, x, ξ)dξ, E = ∂xV, (1.5)

or the Euler-Poisson equations in the physical space [30]

∂tρ + ∂x(ρu) = 0, x ∈ R, t ≥ 0, (1.6)

∂t(ρu) + ∂x(ρu2) = −ρ∂xV, (1.7)

∂xxV = b(x)− cρ. (1.8)

There are many papers discussing mathematical analysis and numerical methods for those
equations [8, 11, 12, 24, 37], such as the existence and uniqueness of suitable weak solution to
Vlasov-Poisson equations [9,19,29,32,50] and numerical methods for capturing the multi-valued
solutions to the Euler-Poisson equations [14,27,31].

A well-known drawback to the semiclassical approach is that it can not give accurate solu-
tions around caustics. The Gaussian beam methods, developed for the high frequency linear
waves [22, 23, 25, 26, 39, 40, 44, 46, 47] and also in the setting of quantum mechanics [15–17],
on the other hand, are efficient asymptotic methods that give accurate solutions even around
caustics ([45]). The key idea of the Gaussian beam methods is to complexify the phase function
S(t, x) off the beam center. Moreover, the imaginary part of S(t, x) should be chosen delicately
so that the solution decays exponentially. In this paper, we extend the Gaussian beam meth-
ods, proposed previously by the authors [22] for the linear Schrödinger equation, to the weakly
nonlinear Schrödinger-Poisson equation (1.1)-(1.2). The original Gaussian beam methods were
developed for linear high frequency waves, based on the linear superposition principle. It is of
great mathematical and numerical interests to see if the methods can be extended to (at least
weakly-) nonlinear problems. In this paper, we propose a class of Gaussian beam methods, in
both Lagrangian and Eulerian frameworks, for the Schrödinger-Poisson equations, and check
their validity for this weakly nonlinear system.

Our numerical studies show that the Gaussian beam methods can indeed be extended to
this one-dimensional, weakly nonlinear system. Indeed, convergent results can be observed,
even around caustics, for both the focusing and defocusing cases, when ε → 0.


