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Abstract

Fixed-point continuation (FPC) is an approach, based on operator-splitting and con-

tinuation, for solving minimization problems with `1-regularization:

min ‖x‖1 + µ̄f(x).

We investigate the application of this algorithm to compressed sensing signal recovery, in

which f(x) = 1
2
‖Ax − b‖2M , A ∈ Rm×n and m ≤ n. In particular, we extend the original

algorithm to obtain better practical results, derive appropriate choices for M and µ̄ under a

given measurement model, and present numerical results for a variety of compressed sensing

problems. The numerical results show that the performance of our algorithm compares

favorably with that of several recently proposed algorithms.
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1. Introduction

The fixed-point continuation (FPC) algorithm proposed in [40] can be used to compute
sparse solutions for under-determined linear systems Ax = b using the weighted least-squares
formulation

min
x∈Rn

‖x‖1 +
µ̄

2
‖Ax− b‖2M , (1.1)

where A ∈ Rm×n, m < n, ‖p‖2M = pTMp and M is positive definite. This paper describes im-
plementation details and usage guidelines for this setting, and summarizes a series of numerical
experiments. The experiments simulate compressed sensing applications and provide for direct
comparison of FPC with three other state-of-the-art compressed sensing recovery algorithms:
GPSR [36], l1−ls [42], and StOMP [27].

1.1. Background

In some applications, sparse solutions, that is, vectors that contain many zero elements, are
preferred over dense solutions that are otherwise equally suitable. This was recognized early
in geophysics, where sparse spike train signals are often of interest and data may include large
sparse errors [18, 46, 60, 63]. The signal processing community seeks sparse vectors so as to
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describe a signal with just a few waveforms; similarly, statisticians often want to identify a
parsimonious set of explanatory variables [17,28,50,51,64].

A direct, but computationally intractable, method for finding the sparsest solution to an
under-determined linear system is to minimize the so-called “`0-norm”, that is, the number of
nonzeros in a vector. On the other hand, minimizing or bounding ‖x‖1 has long been recognized
as a practical substitute, as the two are equivalent under suitable conditions. This yields the
so-called basis pursuit problem [17]

min
x∈Rn

{‖x‖1 |Ax = b} . (1.2)

If the “observation” b is contaminated with noise ε, i.e.,

b = Ax+ ε,

then an appropriate norm of the residual Ax − b should be minimized or constrained. Such
considerations yield a family of related optimization problems. For instance, if the noise is
Gaussian then the `1-regularized least squares problem

min
x∈Rn

‖x‖1 +
µ̄

2
‖Ax− b‖22, (1.3)

would be appropriate, as would the Lasso problem [64]

min
x∈Rn

{
‖Ax− b‖22 | ‖x‖1 ≤ t

}
, (1.4)

which is equivalent to (1.3) given appropriate constants µ̄ and t. Note that formulations (1.1)
and (1.3) are equivalent since a weighting matrix M can be incorporated in (1.3) by multiplying
A and b on the left by M1/2. We use the explicitly weighted formulation (1.1) because it arises
naturally from the stochastic measurement model introduced in Section 3.1.

1.2. l1-Regularization and Compressed Sensing

Compressed Sensing is the name assigned to the idea of encoding a large sparse signal us-
ing a relatively small number of linear measurements, and decoding the signal either through
minimizing the `1-norm (or its variants) or employing a greedy algorithm. The current burst
of research in this area is traceable to new results reported by Candes et al. [12–14], Donoho
et al. [25, 26, 68] and others [59, 65]. Applications of compressed sensing include compressive
imaging [62, 73, 74], medical imaging [48], multi-sensor and distributed compressed sensing [3],
analog-to-information conversion [43–45,67], and missing data recovery [81]. Compressed sens-
ing is attractive for these and other potential applications because one can obtain a given quan-
tity of information with fewer measurements in exchange for some additional post-processing.

In brief, compressed sensing theory shows that a sparse signal of length n can be recovered
from m < n measurements by solving an appropriate variant of (1.2), (1.3), (1.4), etc., provided
that the m × n measurement matrix A possesses certain “good” properties. To date, random
matrices and matrices whose rows are taken from certain orthonormal matrices have been
proven to be “good”. These matrices are invariably large and dense, which contradicts the usual
assumption of optimization solvers that large-scale problems appear with sparse data. The size
and density of the data involved further suggest that solution algorithms should not require
large linear system solves or matrix factorizations, and should take full advantage of available
fast transforms like FFT and DCT. Thus it is necessary to develop dedicated algorithms for
compressed sensing signal reconstruction that have the aforementioned properties and are as
fast and memory-efficient as possible.


