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Abstract

Based on the Boolean sum technique, we introduce and analyze in this paper a class

of multi-level iterative corrections for finite dimensional approximations. This type of

multi-level corrections is adaptive and can produce highly accurate approximations. For

illustration, we present some old and new finite element correction schemes for an elliptic

boundary value problem.
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1. Introduction

Our multi-level corrections are based on the Boolean sum technique. The idea of applying
the Boolean sum technique to construct highly accurate finite dimensional approximations may
be dated back to [22,23], in which some local two-level and three-level finite element correction
schemes were derived. In this paper, we shall propose a type of multi-level iterative corrections
for finite dimensional approximations. This type of schemes is adaptive and is proposed to
produce highly accurate approximations based on some simple postprocesses.

Let us give a little more detailed description of the main idea. Let (H, ‖ · ‖) be a Hilbert
space and A and B be two operators on H. It is known that the so-called Boolean sum of A

and B is defined by A⊕B = A + B −AB. It is easy to see that

I − (A⊕B) = (I −A)(I −B).

Hence as an operator from a subspace of H to another subspace, there may hold that

‖I − (A⊕B) ‖ < ‖I −B‖

for some proper operator A, which is the key that motivates our multi-level corrections. More
precisely, let u ∈ H and Bu be an approximation to u. Then (A⊕B)u may be a better
approximation than Bu for some simple operator A, where both Au and ABu are computable
in application. Note that the construction of A is associated with some subspace of H and
the Boolean sum technique in the multi-level correction in this paper is indeed a successive
subspace correction approach (see Section 2 for details).

We should mention that the Boolean sum technique has been applied to design efficient
numerical schemes in approximation theory, numerical integration, numerical partial differential
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and numerical integral equations, etc., see, e.g., [2, 4, 5, 8–11, 13, 15–18, 20, 25–27, 29, 35–37, 39,
40,43] and references therein. We refer to [28,42] for other interesting connections.

Throughout this paper, we shall use the letter C (with or without subscripts) to denote a
generic positive constant which may stand for different values at its different occurrences. For
convenience, the symbol <∼ will be used in this paper. The notation that x1

<∼ y1 means that
x1 ≤ Cy1 for some positive constant C that is independent of mesh parameters.

2. Multi-Level Correction

We shall discuss the multi-level corrections in a Hilbert space (H, (·, ·)) that can be compactly
embedded into an inner product space (H, < ·, · >), where associated norms are ‖ · ‖ and | · |,
respectively.

Let K be an operator on H defined by

(Kw, v) =< w, v > ∀w ∀v ∈ H.

Then K is compact on (H, ‖ · ‖). Let V ⊂ H be a finite dimensional subspace of H and
PV : H −→ V be a projection operator (namely P 2

V = PV ) satisfying

‖u− PVu‖ <∼ inf{‖u− v‖ : v ∈ V} ∀ u ∈ H. (2.1)

Set

ρV = sup
u∈H,‖u‖=1

|u− PVu|. (2.2)

Then

|u− PVu| <∼ ρV‖u‖, ∀ u ∈ H,

|u− PVu| <∼ ρV‖u− PVu‖, ∀ u ∈ H. (2.3)

Consequently,

inf{|u− v| : v ∈ V} <∼ ρV inf{‖u− v‖ : v ∈ V}, ∀ u ∈ H. (2.4)

Lemma 2.1. There hold

ρV <∼ (‖(I − PV )K‖+ ‖K(I − PV )‖)1/2
, (2.5)

lim
V→H

ρV = 0, (2.6)

where V → H means that

inf
v∈V

‖u− v‖ → 0 ∀ u ∈ H. (2.7)

Proof. We divide the proof into four steps. First, note that for any u ∈ H, there hold

|(I − PV )u|2
=(K(I − PV )u, (I − PV )u)

=(K(I − PV )u− PVK(I − PV )u, (I − PV )u) + (PVK(I − PV )u, (I − PV )u),


