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Abstract

We construct and analyse a nodal O(h4)-superconvergent FE scheme for approximating

the Poisson equation with homogeneous boundary conditions in three-dimensional domains

by means of piecewise trilinear functions. The scheme is based on averaging the equations

that arise from FE approximations on uniform cubic, tetrahedral, and prismatic partitions.

This approach presents a three-dimensional generalization of a two-dimensional averaging

of linear and bilinear elements which also exhibits nodal O(h4)-superconvergence (ultracon-

vergence). The obtained superconvergence result is illustrated by two numerical examples.
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1. Introduction

We consider the Poisson equation with homogeneous Dirichlet boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1)

Assume that Ω ⊂ R3 is a bounded rectangular domain and that the right-hand side function
f ∈ C4(Ω).

The weak form of problem (1.1) reads: Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (1.2)

where (·, ·) denotes the scalar products in both L2(Ω) and (L2(Ω))3.
In [15], Schatz referred about the nodal O(h4)-superconvergence of quadratic elements on

uniform tetrahedral partitions (i.e., for each internal edge e the patch of tetrahedra sharing e
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is a point symmetric set with respect to the midpoint of e). This result is extended by Schatz,
Sloan, and Wahlbin [16] to locally symmetric meshes. Since each uniform tetrahedralization is
locally point-symmetric with respect to the midpoints of edges, the O(h4)-superconvergence of
quadratic tetrahedral elements holds at these midpoints as well.

Linear triangular elements also exhibit nodal O(h4)-superconvergence (ultraconvergence)
on uniform triangulations consisting solely of equilateral triangles. This result was obtained by
Lin and Wang in [14] (see also [2]). It is based on the fact that the corresponding stiffness FE
matrix is the same as the matrix associated to the standard 7-point finite difference scheme,
which is O(h4)-accurate. However, this result cannot be extended to three-dimensional space,
since the regular tetrahedron is not a space-filler (see, e.g., [4, 11]).

The study of superconvergence by a computer-based approach developed by Babuška et
al. [1] requires to examine harmonic polynomials in the plane. Note that the dimension of the
space of harmonic polynomials of degree k ∈ {1, 2, . . . } in two variables is only 2, whereas the
dimension of such a space in three variables is 2k+1. This makes superconvergence analysis for
d = 3 much more difficult (see, e.g., [17]) than for d = 2. The likelihood of 2k + 1 polynomial
graphs passing through a common point is much smaller than the probability of two intersecting
polynomial graphs.

A suitable averaging of gradients of FE solutions leads to superconvergence, see, e.g., [5,6]. In
this paper we show that an averaging of stiffness matrices of several kind of elements exhibits
also a superconvergence. In particular, here we will present an averaging of linear algebraic
equations arising from FE approximations of problem (1.2) on uniform partitions of Ω into
cubes, tetrahedra, and triangular prisms, respectively. The method is an extension of the
nodal O(h4)-superconvergence result for the Poisson equation in two-dimensional domains,
where the stiffness matrices corresponding to linear and bilinear elements are appropriately
averaged [12,13] to obtain the matrix associated to the standard 9-point finite difference scheme.
To the authors’ knowledge, extension of this result to the three-dimensional case has not yet
been studied. Note that the size (and also the band-width) of the resulting matrix will be the
same as for the stiffness matrix corresponding to trilinear finite elements, which produces only
O(h2)-accuracy in the maximum norm at nodes.

2. Construction of the Averaged FE Scheme

2.1. Preliminaries

Assume that Th is a uniform face-to-face partition of the domain Ω into cubes. We denote
the set of interior nodes of Th by Nh = {zi}N

i=1, where N = N(h) and h is the length of any
edge.

In order to introduce the relevant FD and FE schemes, we shall use the compact notation
from [9]. To this end, the nodes in the FD stencil (see Figure 2.1) are divided into three separate
groups (midpoints of faces, vertices, and midpoints of edges) and the following conventional
summations

♦U0 = U1 + U2 + U3 + U4 + U13 + U14,

©U0 = U19 + U20 + U21 + U22 + U23 + U24 + U25 + U26,

¤U0 = U5 + U6 + U7 + U8 + U9 + U10 + U11 + U12 + U15 + U16 + U17 + U18,

are used, where the value U0 corresponds to the (central) vertex zi and U1, . . . , U26 stand for


