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Abstract

We consider an inverse quadratic programming (IQP) problem in which the parameters

in the objective function of a given quadratic programming (QP) problem are adjusted as

little as possible so that a known feasible solution becomes the optimal one. This problem

can be formulated as a minimization problem with a positive semidefinite cone constraint

and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC1) convex program-

ming problem with fewer variables than the original one. In this paper a smoothing New-

ton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed

method needs to solve only one linear system per iteration and achieves quadratic conver-

gence. Numerical experiments are reported to show that the smoothing Newton method

is effective for solving this class of inverse quadratic programming problems.
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1. Introduction

For solving an optimization problem, we usually assume that the parameters, associated with
decision variables in the objective function or in the constraint set, are known and we need to
find an optimal solution to the problem. However, in the practice there are many instances
in which we only know some estimates for parameter values, but we may have certain optimal
solutions from experience, observations or experiments. An inverse optimization problem is to
find values of parameters which make the known solutions optimal and which differ from the
given estimates as little as possible.

Burton and Toint (1992) [3] first investigated an inverse shortest paths problem, since then
there are many important contributions to inverse optimization and a large number of inverse
combinatorial optimization problems have been studied, see the survey paper by Heuberger [6]
and the references [1,2,4], etc. For continuous optimization, Zhang and Liu [14,15] first studied
inverse linear programming, Iyengar and Kang [7] discussed inverse conic programming models
and their applications in portfolio optimization. And recently, Zhang and Zhang [16] studied
the rate of convergence of the augmented Lagrangian method for a type of inverse quadratic
programming (IQP) problems. The quadratic programming problem, considered in [16], is of
the form

QP(G, c, A, b) min f(x) :=
1
2
xT Gx + cT x (1.1)

s.t. x ∈ ΩP := {x′ ∈ Rn |Ax′ ≥ b},
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where G ∈ Rn×n is a symmetric matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Let

A := (a1, . . . , am)T , ai ∈ Rn, i = 1, . . . ,m,

Sn denote the space of n× n symmetric matrices, and SOL(P) be the set of optimal solutions
to a problem (P).

Given a feasible point x0 ∈ ΩP , which should be the optimal solution to Problem (1.1) and
a pair (G0, c0) ∈ Sn × Rn which is an estimate of (G, c). The inverse quadratic programming
considered in this paper is to find a pair (G, c) ∈ Sn × Rn to solve

IQP(A, b) min
1
2
‖(G, c)− (G0, c0)‖2 (1.2)

s.t. x0 ∈ SOL(QP(G, c,A, b)),

(G, c) ∈ Sn
+ × Rn,

where Sn
+ is the cone of positively semi-definite symmetric matrices in Sn and ‖ · ‖ is defined by

‖(G′, c′)‖ :=
√

Tr(G′T G′) + c′T c′ for (G′, c′) ∈ Rn×n × Rn.

Problem (1.2) is a cone-constrained optimization problem with a quadratic objective func-
tion. The scale of this problem will be quite large when n is a large number as the number of
its decision variables is n + n(n + 1)/2.

Without loss of generality, we assume that the first p constraints in ΩP are active at x0, or
equivalently

I(x0) := {j : aT
j x0 = bj , j = 1, . . . , m} = {1, . . . , p}.

If G ∈ Sn
+, then x0 ∈ SOL(QP(G, c, A, b)) if and only if there exists u ∈ Rp such that

c + Gx0 −
p∑

i=1

uiai = 0, ui ≥ 0, i = 1, . . . , p.

Let A0 := (a1, . . . , ap)T ∈ Rp×n and the j−th column of A0 be Aj ∈ Rp. Then A0 :=
(A1, . . . , An) and the problem (1.2) can be equivalently expressed as follows

min
1
2
‖(G, c)− (G0, c0)‖2

s.t. c + Gx0 −AT
0 u = 0,

(G, c, u) ∈ Sn
+ × Rn × Rp

+.

(1.3)

As the dimension of the above problem is n(n+1)/2+n+p, quite big when n is large, it would
be helpful to consider its dual. It follows from [16] that the dual problem can be written as

IQD(A, b) max υ0(z)
s.t. A0z ≤ 0,

(1.4)

where
υ0(z) = −1

2
‖z‖2 + c0T z − 1

2
‖ΠSn

+
(Ḡ(z))‖2F +

1
2
‖G0‖2F , (1.5)

and

Ḡ(z) = G0 − Bz, Bz :=
zx0T + x0zT

2
.


