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Abstract

A new recovery operator P : Qdisc
n (T ) → Qdisc

n+1(M) for discontinuous Galerkin is

derived. It is based on the idea of projecting a discontinuous, piecewise polynomial solution

on a given mesh T into a higher order polynomial space on a macro mesh M. In order

to do so, we define local degrees of freedom using polynomial moments and provide global

degrees of freedom on the macro mesh. We prove consistency with respect to the local

L2-projection, stability results in several norms and optimal anisotropic error estimates.

As an example, we apply this new recovery technique to a stabilized solution of a singularly

perturbed convection-diffusion problem using bilinear elements.

Mathematics subject classification: 65N12, 65N15, 65N30.

Key words: Discontinuous Galerkin, Postprocessing, Recovery.

1. Introduction

The importance of developing superconvergence recovery techniques for finite element ap-
proximations is two folded: firstly, the objective is to improve the approximation accuracy of
low order finite elements on coarse meshes, which will significantly reduce the computational
costs to achieve a certain accuracy. Secondly, the recovered solution values can be used in
computation of a posteriori error estimators, which are essential for estimating the accuracy of
finite element approximations and for guiding the mesh refinement in adaptive methods.

The main objective in this paper is the improvement of solution accuracy by using su-
percloseness results and an appropriate recovery technique (postprocessing). This type of su-
perconvergence by recovery is well-known and has been extensively studied in the literature
for different classes of problems, see, e.g., [5, 6, 9, 16]. The application of this technique to
stabilized finite element discretization for solving singularly perturbed problems can be found
in [11, 13, 14]. It has been shown that (in the two-dimensional case) the vertex-edge-cell in-
terpolant, studied in [1], is superclose to the streamline-diffusion finite element solution on a
Shishkin mesh. A recovery operator which is consistent with this special interpolant, allows to
prove a superconvergence result for the postprocessed SDFEM solution.
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An alternative stabilization method for singularly perturbed problems is the discontinuous
Galerkin method for which a supercloseness result with respect to the discontinuous, local L2-
projection onto piecewise bilinear functions has been established in [12]. The discussed method
therein is the so called NIPG, see also [3, 10].

Our recovery techniques applies to the more general case of the local L2-projection onto the
space of discontinuous, piecewise polynomials of arbitrary degree n ∈ N in each variable and
in any space dimension. Therefore it can be applied to a more general class of discontinuous
Galerkin methods. We choose for application the NIPG because here a supercloseness result is
known. For convection-diffusion equations in 1d several supercloseness results using numerical
traces and possible postprocessing methods are known, see [4, 15].

We also recommend the reader to the recent reference [18] on recovery techniques in finite
elements with special emphasis on Zienkiewicz-Zhu’s patch recovery and polynomial preserving
recovery.

The outline of this article is as follows. We start in Section 2 with the 1d-recovery operator.
In Section 3 we construct the 2d-recovery operator and prove stability and anisotropic error
estimates. Finally, in Section 4 we connect our results to recently published results [12] in the
case of bilinears on a Shishkin mesh for a singularly perturbed partial differential equation.

Notation: For a function u : T → R which belongs piecewise in L2 we define the broken
L2-norm by

‖u‖0,T =

( ∑

K∈T
‖u‖20,K

)1/2

.

2. Basics in 1d

We start the definition of the recovery operator in one space-dimension. In order to simplify
the notation we will work on reference elements. Thus, let IL := [−1, 0] and IR := [0, 1] be the
reference intervals.

Our operator will be a projection onto a higher order polynomial space on macro meshes.
Let IM := IL ∪ IR denote the reference macro element to a given macro element consisting
of two intervals. The reference mesh consists of the two subintervals of IM and is denoted by
T := {IL, IR}.

We start the definition of the projector by defining local degrees of freedom on this mesh.
Let

Ri(v) :=
∫ 1

0

ηi(t)v(t) dt and Li(v) :=
∫ 0

−1

ηi(t + 1)v(t) dt, ∀i = 0, . . . , n (2.1)

with {ηi}n
i=0 denoting the Legendre polynomial basis of Pn(IR), the space of polynomials of

degree at most n. Due to the L2-orthogonality of these polynomials, the sets {Ri}m
i=0 and

{Li}m
i=0 with 0 ≤ m ≤ n are Pm(IR)- resp. Pm(IL)-unisolvent, i.e. an element v ∈ Pm(I) is

uniquely defined for given values {N1
i v}m

i=0. Then, there is a local basis {ψ1
i }n

i=0 of Pn(IR) with

Ri(ψ1
j ) = δij , i, j = 0, . . . , n (2.2)

where δij is the Kronecker delta. Clearly our local basis functions are scaled Legendre polyno-
mials with deg ψ1

i = i, i = 0, . . . , n, and the interpolation operator defined by

πv ∈ P disc
n (T ) : Ri(πv) = Ri(v), Li(πv) = Li(v), i = 0, . . . , n (2.3)


