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Abstract

In this review, we intend to clarify the underlying ideas and the relations between

various multigrid methods ranging from subset decomposition, to projected subspace de-

composition and truncated multigrid. In addition, we present a novel globally convergent

inexact active set method which is closely related to truncated multigrid. The numerical

properties of algorithms are carefully assessed by means of a degenerate problem and a

problem with a complicated coincidence set.
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1. Introduction

Since the pioneering papers of Fichera [1] and Stampaccia [2] almost fifty years ago, vari-

ational inequalities have proved extremely useful for the mathematical description of a wide

range of phenomena in material science, continuum mechanics, electrodynamics, hydrology and

many others. We refer to the monographs of Baiocchi and Capelo [3], Cottle et al. [4], Duvaut

and Lions [5], Glowinski [6] or Kinderlehrer and Stampaccia [7] for an introduction. Even the

special case of obstacle problems covers a large and still growing number of applications ranging

from contact problems in continuum mechanics to option pricing in computational finance or

phase transitions in metallurgy (cf., e.g., Rodrigues [8]). In addition, the fast algebraic solution

of discretized versions of highly nonlinear partial differential equations or related variational

inequalities can be often traced back to a sequence of obstacle problems playing the same role

as linear problems in classical Newton linearization [9–12]. Finally, apart from their practical

relevance, obstacle problems are fascinating mathematical objects of their own value which

inherit some, but far from all essential properties from their unconstrained counterparts.

On this background, many approaches for the iterative solution of obstacle problems have

been suggested and pursued. Penalty methods based on straightforward regularization are

still popular in the engineering community. A mathematically well-founded approach is to

incorporate the constraints by Lagrange multipliers [6]. It is an advantage of this approach

that very general constraints can be treated in a systematic way. On the other hand it doubles

the number of unknowns and leads to indefinite problems. operators and box constraints. Active

set strategies consist of an activation/inactivation step that produces an actual guess for the

coincidence set and a subsequent solution step for the resulting reduced linear problem. This

concept has been very popular since the benchmarking work by Hackbusch and Mittelmann [13]

and Hoppe [14, 15]. Recent new interest was stimulated by a reinterpretation of the active set
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approach in terms of nonsmooth Newton methods [16, 17]. As the existing convergence theory

typically requires the exact solution of the linear subproblems the combination with inexact

(multigrid) solvers is often performed on a heuristic level [18–20].

In this review we concentrate on extensions of classical multigrid methods to self-adjoint

elliptic obstacle problems with box-constraints. Our aim is to bridge the gap between the

underlying simple ideas motivated by linear subspace decomposition and detailed descriptions

of the final implementation as multigrid V -cycles. We also intend to clarify the relations be-

tween different concepts ranging from subset decomposition [21], projected subspace decom-

position [22–24] to monotone multigrid [25] and even active set strategies both with regard to

convergence analysis and numerical properties. In particular, we propose a novel truncated

nonsmooth Newton multigrid method which can be as well regarded as an inexact active set

algorithm or a slight modification of truncated monotone multigrid. Activation/inactivation

is performed by a projected Gauß-Seidel step, linear solution is replaced by just one trun-

cated multigrid step (cf. Kornhuber and Yserentant [26]) and global convergence is achieved by

damping.

Roughly speaking, it turns out that increasing flexibility goes with decreasing theoretical

coverage ranging from multigrid convergence rates for multilevel subset decomposition or pro-

jected multilevel relaxation to strong mesh-dependence of truncated monotone multigrid or

truncated nonsmooth Newton multigrid for badly chosen initial iterates. On the other hand,

increasing flexibility seems to increase the convergence speed considerably in the case of rea-

sonable initial iterates: Combined with, e.g., nested iteration, truncated monotone multigrid

or truncated nonsmooth Newton multigrid methods converge even for complicated coincidence

sets with similar convergence speed as classical linear multigrid methods for unconstrained

problems. The lack of robustness of truncated monotone multigrid or active set strategies is

that local inactivation by projected Gauß-Seidel or related strategies [16] might deteriorate the

convergence speed, because slow next-neighbor interaction might dominate for overestimated

coincidence sets. As a natural remedy, we also propose hybrid methods where local activa-

tion/inactivation is replaced by a global standard monotone multigrid step. In our numerical

experiments, hybrid version prove extremely efficient for degenerate problems.

2. Continuous Problem and Discretization

2.1. Constrained minimization, variational inequalities, and finite elements

Let Ω be a bounded, polyhedral domain in the Euclidean space R
d, d = 1, 2, 3 and let

H ⊂ H1(Ω) be a closed subspace. We consider the minimization problem

u ∈ K : J (u) ≤ J (v) ∀v ∈ K (2.1)

with the closed, convex, and non-empty set K,

K = {v ∈ H | v ≥ ϕ a.e. in Ω} ⊂ H,

as generated by a suitable obstacle function ϕ ∈ H1(Ω) ∩ C(Ω). We emphasize that all al-

gorithms and convergence results to be presented can be generalized to sets K where also an

upper obstacle is present. The energy functional J ,

J (v) = 1
2a(v, v)− ℓ(v), (2.2)


