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Abstract

The convergence analysis on the general iterative methods for the symmetric and pos-

itive semidefinite problems is presented in this paper. First, formulated are refined neces-

sary and sufficient conditions for the energy norm convergence for iterative methods. Some

illustrative examples for the conditions are also provided. The sharp convergence rate iden-

tity for the Gauss-Seidel method for the semidefinite system is obtained relying only on

the pure matrix manipulations which guides us to obtain the convergence rate identity

for the general successive subspace correction methods. The convergence rate identity for

the successive subspace correction methods is obtained under the new conditions that the

local correction schemes possess the local energy norm convergence. A convergence rate

estimate is then derived in terms of the exact subspace solvers and the parameters that

appear in the conditions. The uniform convergence of multigrid method for a model prob-

lem is proved by the convergence rate identity. The work can be regraded as unified and

simplified analysis on the convergence of iteration methods for semidefinite problems [8,9].
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1. Introduction

We consider the iterative methods for the following linear problem,

Au = b, (1.1)

where A is a symmetric and positive semidefinite operator from V to V , V is a finite dimensional

Hilbert space with the inner product (·, ·) and b ∈ V is a vector in the range of A. Such

semidefinite problems arise in many areas of applied mathematics. The finite element and/or
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finite difference discretizations of the Poisson equation with Neumann boundary conditions [2]

and the linear elasticity equation with pure traction boundary conditions lead to such problems.

Other more sophisticated examples can be found at the linear systems obtained from generalized

finite element methods [15, 16], and the time dependent Navier-Stokes systems [3].

For such problems, in general, it is difficult to apply the direct methods in a straightforward

manner (not to mention that direct methods are very expensive for large linear systems [23]).

Iterative methods are desirable for large semidefinite systems and our focus in this paper will

be made, in particular, on the convergence analysis of the classic iterative methods and the

general subspace correction methods for semidefinte (singular) problems given in (1.1).

The studies of the classic iterative methods for singular systems and their convergence can

be traced back to Keller, [7] and there have been many investigations by many researchers since

then, see [1, 4, 8, 11] and also many references cited therein. The classical iterative methods

discussed in those works are mainly based on a matrix splitting: A = M − N and from the

setting for the iterates {uℓ}ℓ=0:

Muℓ = Nuℓ−1 + b (1.2)

or equivalently,

M
(
uℓ − uℓ−1

)
=
(
b − Auℓ−1

)
. (1.3)

All the convergence results require that the iterator M be an invertible matrix, except that

in [8]. Furthermore, the setting in [8] requires N (M t) ⊂ N (A) which is necessary for the

solvability of (1.2) for xℓ.

In this paper, we study iterative methods for (1.1) in the following form:

uℓ = uℓ−1 + R
(
b − Auℓ−1

)
, (1.4)

where R is a linear operator from V to V and it may be singular. We then present more refined

necessary and sufficient conditions for the energy norm convergence of the iterative method

(1.4). One advantage of such view is that no assumption on the null space is necessary.

The rest of paper will be devoted to establish a convergence rate identity for the general

successive subspace correction method. The techniques of subspace correction methods are

based on a “divide and conquer” strategy. Classic iterative methods as Gauss-Seidel method,

and many multigrid and domain decomposition methods fall into this category of methods.

Recently, authors provided a sharpest possible convergence estimate for the general subspace

correction method for singular systems in a general Hilbert space setting, [9]. The current works

are aimed to better understand the basic idea of obtaining the convergence rate estimate in a

transparent manner restricting the problem in finite dimensional spaces.

The sharp convergence rate identity for the Gauss-Seidel method for the semidefinite system,

is obtained relying only on the pure matrix manipulations. The idea will guide us to obtain

the convergence rate identity for the general successive subspace correction methods. For the

successive subspace correction methods, we assume that the local correction schemes possess

the local energy norm convergence. We then derive a new version of the convergence rate

identity [9] under minimal assumptions. We also get the convergence rate estimate in terms

of the exact subspace solvers and the parameters that appear in the conditions. In Section

4, we give an example from an electrochemical model to illustrate how to apply our identity

in designing an optimal multigrid method for such a singular system, and prove the uniform

convergence for the multigrid method. As the results in this paper, we will be able to give the

convergence criteria that are more refined and concise that that in [8, 9] and whose analysis

becomes more transparent.


