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Abstract

In this paper, we propose a tailored-finite-point method for the numerical simulation of

the Helmholtz equation with high wave numbers in heterogeneous medium. Our finite point

method has been tailored to some particular properties of the problem, which allows us to

obtain approximate solutions with the same behaviors as that of the exact solution very

naturally. Especially, when the coefficients are piecewise constant, we can get the exact

solution with only one point in each subdomain. Our finite-point method has uniformly

convergent rate with respect to wave number k in L2-norm.
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1. Introduction

We are interested in the inhomogeneous Helmholtz equation in one-dimensional case:

d

dx

(

c2(x)
du

dx

)

+ k2n2(x)u = f(x), ∀x ∈ Ω = (a, b) ⊂ R, (1.1)

u(a) = 0, (cu′ − iknu) (b) = 0, (1.2)

u(x) and c2(x)u′(x) are continuous on Ω, (1.3)

where ‘i’ is the imaginary unit, k > 0, f ∈ L2(Ω), c(x) and n(x) are two piecewise smooth

functions which represent the local speed of sound and the index of refraction respectively and

satisfy

0 < c0 ≤ c(x) ≤ C0 < ∞, 0 < n0 ≤ n(x) ≤ N0 < ∞. (1.4)

The above boundary value problem of the Helmholtz equation arises in many physical fields,

such as the acoustic wave propagation, the electromagnetic wave propagation, seismic wave

propagation in geophysics, and so on. It is well known that the numerical simulation of the

Helmholtz equation with high wave numbers in inhomogeneous medium is extremely difficult,

see, e.g., [2, 13, 14, 15]. In the last ten years, there have been some efficient methods for this

kind of problems with constant coefficients, including the discrete singular convolution method

[4], hybrid numerical asymptotic method [10], spectral approximation method [20], element-free

Galerkin method [21, 23], the so-called ultra weak variational formulation [12], etc. Generally

speaking, one needs the restriction kh = O(1) for the mesh size h to achieve a satisfactory

numerical result.
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For our model problem (1.1)-(1.3), if we let

y(x) =

∫ x

a

1

c2(ξ)
dξ, τ = y(b), m(y) ≡ c

(

x(y)
)

n
(

x(y)
)

, F (y) ≡ f
(

x(y)
)

, (1.5)

then the function U(y) ≡ u
(

x(y)
)

will satisfy the following equivalent problem:

U ′′(y) + k2m2(y)U(y) = F (y), y ∈ I = (0, τ), (1.6)

U(0) = 0, U ′(τ) − ikm(τ)U(τ) = 0, (1.7)

U(y) and U ′(y) are continuous on I. (1.8)

In this paper, we propose an approach which is based on the properties of the localized

approximate problem to solve our model problem (1.6)-(1.8). Our method can give a natural

approximation of the original problem with its essential properties. In particular, we can give

the exact solution when m is a piecewise-constant function.

The rest part of this paper is organized as follows. In Section 2, we fix notations and discuss

the stability results for our model problem. In Section 3, we present our finite-point method

for the inhomogeneous Helmholtz equation based on the properties of the solutions. We also

give the stability analysis and error estimates for the proposed method. In Section 4, some

numerical examples are given to show the efficiency of our method. Finally, we make a short

conclusion in Section 5.

2. Stability Analysis for Analytical Solution

Without loss of generality, we assume that I = (0, τ) ≡ (0, 1). Let

L2(I) =

{

v

∣

∣

∣

∣

∫

I

|v(y)|2dy < +∞

}

denote the space of all square-integrable complex-valued functions equipped with the inner

product

(v, w) :=

∫

I

v(y)w̄(y)dy

and the norm

‖v‖0,I :=
√

(v, v).

We also introduce the standard Sobolev spaces, for l ∈ N,

H l(I) =
{

v
∣

∣

∣ v ∈ L2(I), v(j) ∈ L2(I), j = 1, · · · , l
}

,

where v(j) are the derivatives of order j in the distribution sense. By |v|l,I := ‖v(l)‖0,I a

semi-norm is given in H l(I). A norm of the space H l(I) is defined as

‖v‖l,I =





l
∑

j=0

|v|2j,I





1/2

.

From now on, if not stated otherwise, all constants C, or Cj , with j ∈ N, are assumed to be

independent of all parameters of the given estimate, and having, in general, different meanings


