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Abstract

In this paper, we study the strong stability preserving (SSP) property of a class of

deferred correction time discretization methods, for solving the method-of-lines schemes

approximating hyperbolic partial differential equations.
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1. Introduction

In this paper, we are interested in the numerical solutions of hyperbolic partial differential

equations (PDEs). A typical example is the nonlinear conservation law

ut = −f(u)x. (1.1)

A commonly used approach to design numerical schemes for approximating such PDEs is to

first design a stable spatial discretization, obtaining the following method-of-lines ordinary

differential equation (ODE) system,

ut = L(u), (1.2)

to approximate (1.1). Notice that even though we use the same letter u in (1.1) and (1.2),

they have different meanings. In (1.1), u = u(x, t) is a function of x and t, while in (1.2),

u = u(t) is a (vector) function of t only. Stable spatial discretization for (1.1) includes, for

example, the total variation diminishing (TVD) methods [6], the weighted essentially non-

oscillatory (WENO) methods [7], and the discontinuous Galerkin (DG) methods [1]. In this

paper, we assume that the spatial discretization (1.2) is stable for the first-order Euler forward

time discretization

un+1 = un + ∆tL(un) (1.3)
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under a suitable time step restriction

∆t ≤ ∆t0. (1.4)

This stability is given as

‖un+1‖ ≤ ‖un‖ (1.5)

for a suitable norm or semi-norm ‖ · ‖. For the TVD schemes [6], ‖ · ‖ is taken as the total

variation semi-norm. For technical reasons, we would also need a different but closely related

spatial discretization to (1.1):

ut = L̃(u) (1.6)

with the property that the first-order “backward” time discretization

un+1 = un − ∆tL̃(un) (1.7)

is stable in the sense of (1.5) under the same time step restriction (1.4). For the conservation

law (1.1), the operator L̃ can often be obtained simply by reversing the wind direction in the

upwind approximation. We refer to, e.g., [1, 7, 11] for such implementation in ENO, WENO

and DG methods.

Even though the fully discretized scheme (1.3) is assumed to be stable as in (1.5), it is

only first-order accurate in time. For a high-order spatial discretization such as in the WENO

and DG methods, we would certainly hope to have higher-order accuracy in time as well. A

higher-order time discretization for (1.2) is called strong stability preserving (SSP) with a CFL

coefficient c, if it is stable in the sense of (1.5) under a possibly modified time step restriction

∆t ≤ c ∆t0. (1.8)

SSP time discretizations were first developed in [10] for multi-step methods and in [11] for

Runge-Kutta methods. They were referred to as TVD time discretizations in these papers, since

the semi-norm involved in the stability (1.5) was the total variation semi-norm. More general

SSP time discretizations can be found in, e.g., [3, 4, 12, 13]. The review paper [5] summarizes

the development of the SSP method until the time of its publication.

In this paper we study the SSP property of a newly developed time discretization technique,

namely the (spectral) deferred correction (DC) method constructed in [2]. An advantage of this

method is that it is a one step method (namely, to march to time level n + 1 one would only

need to store the value of the solution at time level n) and can be constructed easily and

systematically for any order of accuracy. This is in contrast to Runge-Kutta methods which are

more difficult to construct for higher order of accuracy, and to multi-step methods which need

more storage space and are more difficult to restart with a different choice of the time step ∆t.

Linear stability, such as the A-stability, A(α)-stability, or L-stability issues for the DC methods

were studied in, e.g., [2, 8, 14]. However, for approximating hyperbolic equations such as (1.1)

with discontinuous solutions, linear stability may not be enough and one would hope the time

discretization to have the SSP property as well.

The (s + 1)-th order DC time discretization to (1.2) that we consider in this paper can be

formulated as follows. We first divide the time step [tn, tn+1], where

tn+1 = tn + ∆t

into s subintervals by choosing the points t(m) for m = 0, 1, · · · , s such that

tn = t(0) < t(1) < · · · < t(m) < · · · < t(s) = tn+1.


