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Abstract

The stability of the P1-P0 mixed-element is established on general Powell-Sabin tri-

angular grids. The piecewise linear finite element solution approximating the velocity is

divergence-free pointwise for the Stokes equations. The finite element solution approxi-

mating the pressure in the Stokes equations can be obtained as a byproduct if an iterative

method is adopted for solving the discrete linear system of equations. Numerical tests are

presented confirming the theory on the stability and the optimal order of convergence for

the P1 Powell-Sabin divergence-free finite element method.
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1. Introduction

A natural finite element method for the Stokes equations would be the Pk-Pk−1 mixed

element which approximates the velocity by continuous Pk piecewise-polynomials and approxi-

mates the pressure by discontinuous Pk−1 piecewise-polynomials. One advantage of the element

is to preserve the incompressibility condition of incompressible fluids, i.e., the discrete velocity

is also divergence-free pointwise [2, 3, 18, 28, 29, 34]. Another advantage is its simplicity in

computation that the mixed element can be reduced to the standard C0 finite element solving

Laplace equations, as the discrete pressure is a byproduct when an iterative method is used for

the linear system of discrete equations. A fundamental study on the method was done by Scott

and Vogelius in 1983 [28, 29] that the method is stable and consequently of the optimal order

on 2D triangular grids for any k ≥ 4, provided that the grids have no nearly-singular vertex (a

vertex is called singular if all edges meeting at the vertex form two cross lines.) For k ≤ 3, Scott

and Vogelius showed the method would not be stable for general triangular grids, in [28, 29].

Nevertheless, for low order elements, (k < 4), the Pk-Pk−1 element can still be stable if the un-

derlying triangulations are of certain types. The stability is shown for the Hsieh-Clough-Tocher

triangles with k ≥ 2 [24], for the quadrilateral-triangulations with k = 2 [2], for the uniform

criss-cross grids with k = 1 [25] and for the 3D Hsieh-Clough-Tocher tetrahedral grids with

k ≥ 3 [35].

To establish the convergence of the finite element solution for the pressure, a uniform (in-

dependent of the grid size h) inf-sup condition, (cf. (3.7)), known as LBB condition (cf. [6]),

is usually required. For example, when a nearly-singular vertex approaches to singular (cf.

* Received February 14, 2008 / accepted March 3, 2008 /



P1 Divergence-Free Element for Stokes Equations 457

[28, 29]), the inf-sup constant approaches to zero for the mixed element space Pk-Pk−1. Nev-

ertheless, when the vertex becomes a singular one, the inf-sup constant would jump back from

zero to a regular one, because the extra spurious pressure mode is filtered out automatically in

the divergence-free element method. This is exactly the situation for the P1-P0 mixed element

on Powell-Sabin grids. To be precise, here the discrete space for the pressure is the divergence

of C0-P1 conforming element space, a proper subspace of the C−1-P0 space on the grid. Via the

macro-element technique [6, 31] and a local L2-orthogonal decomposition (see (3.14) below), we

prove the inf-sup condition for the P1-P0 mixed element on Powell-Sabin grids. The stability of

this P1 Powell-Sabin element has not been fully studied previously, but the element was used

in computation, cf. [8]. We note that the name of divergence-free mixed element is used often

for non-conforming [4, 21, 32] or discontinuous Galerkin methods [7, 10, 14, 17], or even for

weakly divergence-free methods [33]. But here, the discrete solutions for the velocity are truly

divergence-free, including the points on the inter-element boundary.

The rest of the paper is divided into the following sections. In Section 2, we define the

divergence-free finite element method and prove the uniqueness of such finite element solution.

We will show how to reduce the Pk-Pk−1 mixed element to the C0-Pk element, and how to apply

the classic iterated penalty method to solve the discrete, but positive definite, linear systems

of equations. In Section 3, we will show the inf-sup condition for the Powell-Sabin element. In

Section 4 we provide numerical tests using the Powell-Sabin P1 divergence-free element.

2. The Divergence-free Finite Element

In this section, we shall define the divergence-free finite elements for the stationary Stokes

equations. The resulting linear systems of equations, by such elements, are shown to have a

unique solution. The classic iterated penalty method is introduced, which solves the discrete

linear system and generates the discrete pressure solution as a byproduct.

We consider the stationary Stokes equations: Find functions u (the fluid velocity) and p

(the pressure) on a 2D polygonal domain Ω ⊂ R2 such that

− ∆u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where f is the body force. Via the integration by parts, we get a variational problem for the

Stokes equations: Find u ∈ H1
0 (Ω)2 and p ∈ L2

0(Ω) := L2(Ω)/C = {p ∈ L2 |
∫

Ω p = 0} such

that
a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1

0 (Ω)2,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(2.2)

Here H1
0 (Ω)2 is the subspace of the Sobolev space H1(Ω)2 (cf. [9]) with zero boundary trace,

and

a(u,v) =

∫

Ω

∇u · ∇v dx,

b(v, p) = −
∫

Ω

div u p dx,

(f ,v) =

∫

Ω

f v dx.


