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Abstract

A monotone compact implicit finite difference scheme with fourth-order accuracy in

space and second-order in time is proposed for solving nonlinear reaction-diffusion equa-

tions. An accelerated monotone iterative method for the resulting discrete problem is

presented. The sequence of iteration converges monotonically to the unique solution of

the discrete problem, and the convergence rate is either quadratic or nearly quadratic,

depending on the property of the nonlinear reaction. The numerical results illustrate the

high accuracy of the proposed scheme and the rapid convergence rate of the iteration.
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1. Introduction

Many phenomena in physics, chemistry, biology and engineering are described by nonlin-

ear reaction-diffusion equations. Much work has been done for the qualitative analysis of the

equations (see [19] and references therein), as well as their numerical simulations (see, e.g.,

[7,10,13,17,18,20,21,23,24,28]). In this paper, we provide a new numerical treatment for a class

of nonlinear reaction-diffusion equations. It includes the construction and analysis of a mono-

tone compact implicit finite difference scheme with high accuracy, and an accelerated monotone

iterative method with rapid convergence rate for solving the resulting discrete problem. The

equation under consideration is of the form:






∂u/∂t + Lu = f(x, t, u), 0 < x < 1, 0 < t ≤ T,

u(0, t) = g0(t), u(1, t) = g1(t), 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.1)

where g0(t), g1(t) and u0(x) are given continuous functions satisfying the compatibility condi-

tions u0(0) = g0(0) and u0(1) = g1(0). The operator Lu in (1.1) is given by

Lu = − ∂

∂x

(
k(x)

∂u

∂x

)
, (1.2)
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where the coefficient k(x) ∈ C1(0, 1) and for certain constants α0 and α1,

0 < α0 ≤ k(x) ≤ α1, x ∈ (0, 1). (1.3)

The function f(x, t, u) in (1.1) is continuous in its domain, and the function f(·, u), which is in

general nonlinear in u, is continuously differentiable in u.

Various numerical methods have been developed for solving problem (1.1). In the usual

finite difference methods, one approximates the term ∂u/∂t by Euler backward method and

the differential operator Lu by the central difference quotient (see, e.g., [7,10,13,17,18,20,21]).

In this case, the resulting discrete system is tridiagonal, and so it does not need any fictitious

points for implementing the scheme. However, such scheme has only the accuracy of O(τ + h2)

where τ and h are the mesh sizes in time and in space, respectively (e.g., [15,17,18,20,21]). In

other words, we must take small mesh sizes in order to obtain the desirable accuracy, and thus

much computational work is involved.

As is well known, by using the Crank-Nicolson technique or the three-level Lees technique

in the time discretization, the accuracy in time can be improved to second-order (see [4,15,25]).

But if Lees technique is used, one has to evaluate the solution at the first time level by other

method (see [4,15,25]). Another trick for improving accuracy in time is to use extrapolation

technique (see [25]). For improvement of the accuracy in space, a conventional approach is to

approximate Lu by using more points in the space discretization (see [4]). However, this not

only significantly increases the computational complexity but also causes difficulty in handling

boundary conditions since fictitious points near boundaries are needed (see [4]).

An alternative approach of improving the accuracy in space is the so-called compact implicit

method which has been developed and generalized by several investigators under the name

Operator Compact Implicit (OCI) method (see, in particular, [2–4]). This method achieves the

fourth-order accuracy while retaining the tridiagonal feature of a second-order method and not

requiring additional fictitious points at the boundary (see [2–4,14]). Assume that the function

u(x) is independent of t. The main idea of the OCI method is to look for an approximation

representation of Lu by establishing the following relationship between Lu and the function u

on the three adjacent points of a uniform mesh xi = ih (h = 1/L, i = 0, 1, · · · , L):

r−i ui−1 + rc
i ui + r+

i ui+1 = q−i (Lu)i−1 + qc
i (Lu)i + q+

i (Lu)i+1, 1 ≤ i ≤ L − 1, (1.4)

or

Riui = Qi(Lu)i, 1 ≤ i ≤ L − 1,

where ui and (Lu)i are the approximations to u and Lu at xi, respectively, and the operators

Ri and Qi are tridiagonal operators:

Riui = r−i ui−1 + rc
i ui + r+

i ui+1, Qiui = q−i ui−1 + qc
i ui + q+

i ui+1, 1 ≤ i ≤ L − 1. (1.5)

This approximation representation for Lu is explicit if q−i = q+
i = 0, and implicit otherwise.

Without loss of generality, throughout this paper, (1.4) is assumed normalized so that

lim
h→0

qc
i = a positive constant, 1 ≤ i ≤ L − 1. (1.6)

Following the terminology of [3,4], a scheme of the form (1.4) will be referred to as an Operator

Compact Implicit (OCI) scheme if it is a fourth-order accurate approximation to Lu, i.e., if

its truncation error is O(h4) after normalization. Note that the fourth-order accuracy is the

highest that can be obtained by a scheme of the form (1.4) (see, e.g., [3,14]).


