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Abstract

Let SE denote the least-squares symmetric solution set of the matrix equation AXB =

C, where A, B and C are given matrices of suitable size. To find the optimal approximate

solution in the set SE to a given matrix, we give a new feasible method based on the

projection theorem, the generalized SVD and the canonical correction decomposition.
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1. Introduction

Denote by Rm×n the set of real m× n matrices, and SRn×n the set of symmetric matrices in

Rn×n. In this paper, we consider the following problem:

Problem 1.1. Given A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p and X∗ ∈ SRn×n. Let

SE = {X |X ∈ SRn×n, ‖AXB − C‖ = min
Y ∈SRn×n

‖AY B − C‖}.

Find X̂ ∈ SE such that

‖X̂ −X∗‖ = min
X∈SE

‖X −X∗‖,

where ‖ · ‖ denotes the Frobenius norm.

In other word, SE is the least-squares symmetric solution set of the matrix equation

AXB = C, (1.1)

and X̂ is the optimal approximate least-squares symmetric solution of the matrix equation (1.1)

to the given matrix X∗.

The consistency conditions of the matrix equation (1.1) with the symmetric solution were

given by Chu [1] (see also Dai [3]), and the symmetric solutions can also be obtained by using

the generalized singular value decomposition (GSVD) when the matrix equation is consistent.

For the matrix equation (1.1), Wang and Chang [17] gave the least-squares symmetric solution

by using GSVD; Liao and Bai [12] and Deng [5] considered the least-squares solution over

the symmetric positive semi-definite matrices and positive semi-definite matrices, respectively;

and Yuan [19] also gave the minimum-norm least-squares symmetric solution for the consistent

matrix equation (1.1) by using the canonical correlation decomposition (CCD).
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The problem of finding a nearest matrix in the least-squares symmetric solution set of a

matrix equation to a given matrix in the sense of the Frobenius norm, that is, Problem 1.1

in this paper, is called the matrix nearness problem. The matrix nearness problem is initially

proposed in the processes of test or recovery of linear systems due to incomplete dates or

revising dates. A preliminary estimate X∗ of the unknown matrix X can be obtained by the

experimental observation values and the information of statical distribution. There are many

important results on the discussions of the matrix nearness problem associated with other

matrix equations, we refer the reader to [2, 4, 8, 9, 10, 15] and references therein.

In this paper, we develop an efficient method to solve Problem 1.1. Our approach is based on

the projection theorem in Hilbert space, GSVD and CCD of matrix pairs. It can be essentially

divided into three parts: First, we find a least-squares solution X0 of the matrix equation

(1.1) by using GSVD; then utilizing the solution X0 and the projection theorem, we transfer

Problem 1.1 to a problem of finding the optimal approximate symmetric solution of a consistent

matrix equation; finally, we find the optimal approximate symmetric solution of the consistent

matrix equation by using CCD.

The paper is organized as follows. After introducing some necessary notations and several

useful lemmas in Section 2, we will discuss Problem 1.1 in Section 3, and give the expression

of its solution. Then, in Section 4, we give the numerical algorithm to compute the solution of

Problem 1.1. Numerical experiments will be carried out in Section 4.

2. Notations and Lemmas

The notation used in this paper can be summarized as follows: the set of all n×n orthogonal

matrices in Rn×n is denoted by ORn×n. Denote by I the unit matrix. AT , tr(A) and rank(A)

respectively denote the transpose, the trace and the rank of the matrix A. For A = (aij) ∈

Rm×n, B = (bij) ∈ Rm×n, A ∗ B represents the Hadamard product of the matrices A and B,

that is, A ∗B = (aijbij)m×n. Let 〈A,B〉 represent the inner product of the matrices A and B,

that is, 〈A,B〉 = tr(BTA). Then Rm×n is a Hilbert inner product space, and the norm of a

matrix produced by the inner product is the Frobenius norm.

We first state the concepts of the GSVD and CCD, which are essential tools for deriving

the solution of Problem 1.1. See [6, 7, 11, 13, ?, 16] for details.

Let A ∈ Rm×n and B ∈ Rn×p. Then the GSVD of the matrix pair (A,BT ) is given by

A = UΣAM and BT = V ΣBM, (2.1)

where U ∈ ORm×m and V ∈ ORp×p; M ∈ Rn×n is a nonsingular matrix; and

ΣA =




Ir 0 0 0

0 SA 0 0

0 0 0(m−r−s)×(k−r−s) 0


 and ΣB =




0(p+r−k)×r 0 0 0

0 SB 0 0

0 0 I(k−r−s) 0




are block matrices, with the diagonal matrices SA and SB being given by

SA = diag(α1, α2, · · · , αs) > 0 and SB = diag(β1, β2, · · · , βs) > 0.

Here

k = rank(AT , B), r = k − rank(B), s = rank(A) + rank(B) − k.


