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Abstract

We are interested in the numerical solution of the large nonsymmetric shifted linear

system, (A + αI)x = b, for many different values of the shift α in a wide range. We apply

the Saad’s flexible preconditioning technique [14] to the solution of the shifted systems.

Such flexible preconditioning with a few parameters could probably cover all the shifted

systems with the shift in a wide range. Numerical experiments report the effectiveness of

our approach on some problems.
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1. Introduction

We are interested in the numerical solution of the following large nonsymmetric shifted

linear system,

(A + αjI)x(αj)b, j = 1, · · · , s, (1.1)

for many, possibly a few hundreds, different values of the shift αj in a wide range, all available

simultaneously. This problem arises in many engineering applications like in quantum chro-

modynamics [8], electromagnetics [12], structural dynamics [5,17], wave propagation [15] and

control theory [4]. The traditional approach to this problem is to factorize A + αjI and solve

(1.1) by backtransformation for each αj . This can be quite expensive when s is large. Now

the Krylov subspace methods is a popular approach to solve (1.1); see e.g. [4,7,9,10,17],since

these are invariant with respect to shift αj . More precisely, the Krylov subspace satisfies

Km(A, b) = Km(A + αjI, b), for any αj . Hence, all approximation solutions can be sought in a

single subspace generated by the constant coefficient matrix A.

However, convergence may be slow if the coefficient shifted matrix A + αjI has unfavor-

able spectral properties. Applying an efficient preconditioner for the shifted systems (1.1) is

necessary and important. Some attempts have been made in the past, e.g. polynomial precon-

ditioning, which preserves the shifted form [6], and approximate inverse preconditioner for each

shifted matrix A + αjI by cheaply modifying an existing sparse approximate inverse precondi-

tioner for A [3].
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In [13], the preconditioning matrix (A + σI)−1 with a fixed reference σ is used. This leads

to solve the preconditioned shifted systems

(A + σI)−1(A + αjI)x(αj) = (A + σI)−1b, j = 1, · · · , s. (1.2)

This preconditioning approach maintains the shift-invariance properties of the Krylov subspace,

since

(A + σI)−1(A + αjI) = I + (αj − σ)(A + σI)−1. (1.3)

Thus, all the approximation solutions can be sought in one Krylov subspace generated by

the matrix (A + σI)−1. Meerbergen [13] analyzed the spectrum of the preconditioned matrix

(A + σI)−1(A + αjI). The nice features are that the preconditioner is well suited for values of

αj near the reference value σ. However, it is difficult for only one reference value σ to cover

many different values αj in a wide range.

Based on Saad’s flexible preconditioning idea, the FOM/GMRES method with a variable

preconditioning for solving the shifted systems (1.1) is presented in this paper. The method

allows us to incorporate the different preconditioner, e.g. (A + σiI)−1 with different σi in our

problem, into the Arnoldi procedure when constructing a projective subspace. It is possible

for such single projective subspace with a few different preconditioning matrices (A + σiI)−1

to cover all the different values αj in a wide range. Although such projective subspace is not

a Krylov subspace, it is still invariant with respect to the shift αj , or say that the subspace is

independent on the shift αj . Hence, all the approximation solutions can still be sought in the

single projective subspace generated by the preconditioned matrices (A + σiI)−1. Numerical

experiments report the effectiveness of our approach on some problems.

The remainder of the paper is organized as follows. In Section 2, we first change the

left version of Meerbergen’s preconditioner to the right version. We then present the Arnoldi

method with a flexible preconditioning. In Section 3, we discuss some implementation issues of

the algorithm. Numerical experiments are shown in Section 4.

2. Projective Subspace with Preconditioning

In this section, we first present the right version of Meerbergen’s preconditioning to construct

a flexible preconditioning, and then based on it, we establish FOM/GMRES method with a

flexible preconditioning for solving the shifted linear systems (1.1).

2.1. Right Preconditioning

We employ the right preconditioner (A + σI)−1 to the shifted system (1.1),

(A + αjI)(A + σI)−1x̃(αj) = b, j = 1, · · · , s, (2.1)

where x̃(αj) = (A + σI)x(αj). Since

(A + αjI)(A + σI)−1 = I + (αj − σ)(A + σI)−1, (2.2)

Krylov subspace Km((A + σI)−1, b) generated by (A + σI)−1 is invariant with respect to shift

αj , i.e., Km((A+σI)−1, b) = Km((A+αjI)(A+σI)−1, b), for any αj . Hence, all preconditioned

shifted systems(2.1) can be projected onto a single approximation subspace Km((A+σI)−1, b).

The following Arnoldi procedure builds an orthogonal basis of the Krylov subspace Km((A +

σI)−1, b).


