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Abstract

In this paper we present a systematic way of computing the polarization tensors,

anisotropic as well as isotropic, based on the boundary integral method. We then use

this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The

computation reveals the pair of anisotropy and ellipses which produce the same polarization

tensors.
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1. Introduction

Consider a field ∇H in Rd, d = 2, 3, where H is a harmonic function in Rd. The most
important such a field to consider is given by H(x) = xj , j = 1, . . . , d. The field is disturbed
by the presence of an inclusion B which is a bounded Lipschitz domain in Rd. Let ∇u be the
perturbed field. Then the perturbation admits the multipole expansion

(u−H)(x) =
∞∑

|α|,|β|=1

(−1)|α|

α!β!
∂α

x Γ(x)Mαβ∂βH(0), |x| → ∞, (1.1)

where Γ is the fundamental solution for the Laplacian, and α, β are multi-indices. See [3].
The quantities Mαβ , which describe the perturbation of the field completely, are called the
generalized polarization tensors (PT). In particular, when |α| = |β| = 1, then M = (Mαβ) is
called the first order polarization tensor.

The notion of the polarization tensor can be extended to include the case when the con-
ductivity of the inclusion and that of the matrix (background) are anisotropic. Suppose that
the conductivity of the background Rd \ B is γ̃, while that of the inclusion B is γ, where γ̃

and γ are positive definite symmetric d × d constant matrices. After an obvious change of
variables we may assume that γ̃ = I, the d × d identity matrix. The matrix γ represents an
(anisotropic) material property of the inclusion B. Thus the conductivity profile here is given
by γB = χ(Rd \ B)I + χ(B)γ, where χ(B) denotes the characteristic function of B. Here and
throughout this paper we assume that γ − I is either positive or negative definite. Even in
this case the perturbation (u − H)(x) has multipole expansions (1.1) at ∞. We denote the
anisotropic polarization tensors (APT) associated with this conductivity distribution γB by
Mαβ = Mαβ(I, γ;B).
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The purpose of this paper is to present a simple method to compute PTs anisotropic as
well as isotropic using the layer potential techniques. The method of this paper reduces the
computation of PTs to the computation of the boundary integral operator KB on ∂B which is
defined by (2.6). The method also provides us with a systematic way to compute the PTs nu-
merically. We then proceed to compute anisotropic PTs associated with ellipses and ellipsoids.
It has been known that the first order PTs can be realized in terms of ellipses in a unique way
if the conductivities of the inclusion and the matrix are isotropic [12, 6]. However, the material
property of the inclusion, namely, anisotropic conductivity, cannot be extracted by means of the
first order PT. The computations of this paper completely characterize the pairs of anisotropy
and an ellipse which yield the same PTs. It should be noted that the first order PTs for the
ellipses and ellipsoids are known (see [26]), and the higher order PTs for disks, ellipses, and
balls were computed in [24]. The method of this paper has been applied to the computation of
the elatstic moment tensor [7].

The notion of the (first order) PT appears in various contexts such as the inverse problems
to detect unknown small inclusions, the theory of composite materials, and low frequency
asymptotics to name a few. It was Friedman and Vogelius who first used the first order PT for
the inverse problem of identifying the location of small inclusions [18]. Since then, various non-
iterative direct methods to identify small inclusions using the PT have been proposed and tested
numerically [14, 10, 12, 11, 6, 20, 3]. The PT also naturally appears in the asymptotic expansions
of effective properties of dilute composite materials [5, 8, 9, 15, 19, 26] and low frequency
asymptotics [16, 23]. For a derivation of higher order terms of the asymptotic expansion and
extensions to anisotropic and elastic composites, and for extensive references, we refer to a
recent book [4]. The notion of PT has been generalized to include all the higher order terms
and various important properties of the generalized PT have been obtained [1, 2, 3]. Among
them are symmetry, positive-definiteness, the Hashin-Strikman bounds, and the fact that the
inclusion is completely determined by all the generalized PT even if the conductivity matrix
γ is anisotropic. It should be mentioned that the Hashin-Strikman bounds for the first order
PT, which is optimal, was obtained by Lipton [25] and Capdeboscq-Vogelius [13]. The notion
of the PT was also used in the study of potential flows by Pólya, Szegö, and Schiffer [27, 28]

This paper is organized as follows. In section 2, we derive a general way to compute PTs
using boundary integrals. In section 3, we derive formula for PTs on ellipses. Section 4 is for
ellipsoids.

2. Layer Potential Method for Computation of PT

A fundamental solution to the Laplacian is given by

Γ(x) =





1
2π

ln |x|, d = 2,

− 1
4π

1
|x| , d = 3.

(2.1)

With this fundamental solution, the single and double layer potentials are defined to be

SBφ(x) :=
∫

∂B

Γ(x− y)φ(y) dσ(y), x ∈ Rd, (2.2)

DBφ(x) :=
∫

∂B

∂

∂νy
Γ(x− y)φ(y) dσ(y), x ∈ Rd \ ∂B, (2.3)


