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Abstract

In magnetoencephalography (MEG) a primary current is activated within a bounded
conductive medium, i.e., the head. The primary current excites an induction current and
the total (primary plus induction) current generates a magnetic field which, outside the
conductor, is irrotational and solenoidal. Consequently, the exterior magnetic field can be
expressed as the gradient of a harmonic function, known as the magnetic potential. We
show that for the case of a triaxial ellipsoidal conductor this potential is obtained by using
integration along a specific path which is dictated by the geometrical characteristics of the
ellipsoidal system as well as by utilizing special properties of ellipsoidal harmonics. The
vector potential representation of the magnetic field is also obtained.
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1. Introduction

As Plonsey and Heppner [7] have demonstrated, in studying Bioelectromagnetic problems,
the values of the physical parameters of the human body justify the replacement of Maxwell’s
equations with the equations of quasi-static theory of electromagnetism. This means that
the time derivative terms of the magnetic induction and of the electric displacement fields in
Maxwell’s equations can be omitted. That renders the rotation of the magnetic field propor-
tional to the current. Hence, in regions free of current the magnetic field becomes irrotational
and since, due to the lack of magnetic monopoles, it is also solenoidal, it can be represented
by the gradient of a harmonic function. This function was first obtained by Bronzan [1] via
path integration in appropriate regions that avoid the support of the current. But the actual
meaning of the scalar magnetic potential in MEG was demonstrated by Sarvas [8] in a cele-
brated paper where he showed that for a spherical conductor the exterior magnetic potential
can be obtained from the radial component of the primary current alone. In particular, he
obtained in closed form the potential and therefore the magnetic field as well, for the case of
a homogeneous spherical conductor with a dipole source anywhere in its interior. His solution
coincides with the one Bronzan gave for the general case. It is of interest to see though that
this property of recovering the exterior magnetic field from the radial component of the primary
current is not shared by any other geometry besides the spherical one. In other words, for non
spherical conductors the geometry of the conductor influences directly the exterior magnetic
field. The ellipsoidal geometry has the advantage of being a genuine three dimensional shape
that can be well adjusted in any convex body, and in particular to the brain which anatomicaly
is considered to be an ellipsoid with average semiaxes 6, 6.5 and 9 centimeters. On the other
hand, it is exactly this freedom of adaptation to any convex body that makes the mathematics
much more elaborate than the spherical (1-D) or even the spheroidal (2-D) geometries.
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Obviously, any attempt to calculate the magnetic potential for an ellipsoidal conductor has to
incorporate the contribution from the surface distribution of dipoles as given by the Geselowitz
formula [5]. Therefore, the direct electroencephalography (EEG) problem has to be solved
as well, in order to determine the dipole density function on the boundary of the ellipsoidal
conductor. The crucial part of the present work is to determine the path of integration that
will allow the calculation of the line integral which provides the magnetic potential. We show
that such a path is given by the non planar curve which is defined by the intersection of
the one-sheet hyperboloid and the two-sheet hyperboloid that correspond to the “angular”
ellipsoidal coordinates of the point where the potential is evaluated. It seams that this choice
of integration path is the unique choice which allows for the integration of the ellipsoidal fields.
It is the ellipsoidal analogue of the radial direction for the case of a sphere. Following this
approach we were able to obtain the exterior magnetic field as a series solution in terms of
multipole fields. The leading term of this series, which is the quadrupolic term, was obtained
analytically by the author and Kariotou in [2].

We mention here that as far as the inverse MEG problem is concerned, it was shown by
Fokas, Kurylev and Marinakis [4] for the sphere and by the author, Fokas and Kariotou [3] for
any star-shape conductor, that from the three scalar functions needed to identify the current
only one can be recovered, and this is true even when a complete knowledge of the magnetic
potential outside the head is provided.

Section 2 states the direct problem of magnetoencephalography for a single dipole in ellip-
soidal geometry and provides the solution to the corresponding problem of electroencephalog-
raphy which concerns the electric potential. Section 3 elaborates a compact expresssion for the
multipole expansion of the exterior magnetic field in dyadic form. The vector potential for the
magnetic field is discussed in Section 4 while the corresponding scalar magnetic potential is
obtained in Section 5.

2. The Ellipsoidal MEG Problem

Consider the ellipsoid
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are the three semifocal distances. Since
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only two out of the three semifocal distances are independent.
Introduce the ellipsoidal coordinates [6] (ρ,µ,ν) via
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where
0 < ν2 < h2

3 < µ2 < h2
2 < ρ2 < +∞. (2.6)


