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Abstract

We consider a Second Harmonic Generation (SHG) problem of an optical signal wave
with an optical pump in a medium represented by a smooth bounded domain Ω ⊂ IRd,
which is assumed to contain a heterogeneous material: a compactly imbedded subdomain
Br ⊂⊂ Ω in the shape of a small ball contains a nonlinear material, while Ω \ Br is filled
with a linear material. We begin by proving existence and uniqueness of the solution to
the TE approximation of SHG for arbitrary bounded susceptibilities, thus improving the
result obtained by Bao and Dobson ( Eur. J. Appl. Math. 6 (1995), 573-590) under small
enough susceptibilities assuption. We then establish an existence and uniqueness result
of a solution to the TM approximation problem. In both parts we study the asymptotic
behavior of the system as the size of the nonlinear material vanishes: error estimates and
asymptotic expansion of the solution are derived for both TE and TM approximations.
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1. Introduction

Franken et al. [12] in their second harmonic generation experiment developed a process
for generating double frequency laser beams, thus marking the advent of the field of nonlinear
optics. Though revolutionary, the theory that underpins the discovery is quite basic: a given
medium is subjected to an intense beam of optical pump waves, causing the field in the medium
to be polarized nonlinearly. The former and latter process are governed respectively by the
constitutive equations and a linear system of Maxwell’s equations. For further details, we refer
the reader to the very interesting book by Shen [19].

In this paper, we consider a domain Ω which is filled with a heterogeneous material. Inside
the domain, a ball-shaped subdomain Br ⊂⊂ Ω of small size, with center x0 and radius r
contains a nonlinear material, while Ω \Br is filled with a linear material.

We first use the two-dimensional space model introduced in [6] to deal with the TE approx-
imation (i.e the diffracted electric fields are assumed to be directed in the vertical direction):
we improve the existence and uniqueness result stated in [6] under small enough susceptibil-
ities assumption. Then we study the TM approximation (i.e., the diffracted magnetic and
electric fields, with respectively the same and the double frequency as the incident wave, are
assumed to be directed in the vertical direction) in the setting of the model proposed in [8]
in the three-dimensional case, thereby bypassing the two-dimensional case which presents a
technical difficulty for deriving the asymptotic expansion of the solution. More precisely, we
prove existence and uniqueness of the solution, and furthermore establish the well-posedness of
the problem.
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In both the TE and TM approximations, the behavior of the solution is considered as the
size of the nonlinear material vanishes. Moreover, error estimates and asymptotic expansion
are derived.

2. The TE Approximation

2.1. Model Problem

Consider the model set in [6]. Throughout the paper, we assume that the medium is non-
magnetic and has constant magnetic permeability. For the sake of convenience, the magnetic
permeability parameter is set to 1. In addition, we also assume that no external charges nor
current are present in the field.

The time-harmonic Maxwell equations which govern second harmonic generation (SHG)
take the form { ∇× E = − iω

c H, ∇ ·H = 0,

∇× H = iω
c D, ∇ ·D = 0,

(1)

along with the constitutive equation

D = ε (E + 4πP), (2)

where E is the electric field, H the magnetic field, D the electric displacement, P the polarization
field, ε the electric permittivity of the medium, c the speed of light and ω the angular frequency.
The physics of SHG may be described as follows: when a plane wave with frequency ω = ω1 is
projected onto a nonlinear medium, it generates two diffracted waves with respective angular
frequencies ω = ω1 and ω = ω2 = 2ω1 because of the interaction between the incident wave
and the nonlinear medium. The presence of new frequency components is the most striking
difference between nonlinear and linear optics. For most media however, the nonlinear optical
effects are so negligible that they may be ignored. To observe nonlinear phenomena in the
optical region, one needs high-intensity beams like high-intensity laser ones.

Let us consider the two wave fields E(x, ω1) and E(x, ω2 = ω1 + ω1). To simplify our
notation, we denote E(x, ωi) = E(ωi).

Since second harmonic generation can be considered as a special case of optical mixing [19],
the polarization field at frequencies ω1 and ω2 respectively are given by [19, p. 68]⎧⎨

⎩
P(w1) = χ(1)(ω1).E(ω1) + χ(2)(x, ω1) : E�(ω1)E(ω2),

P(w2) = χ(1)(ω2).E(ω2) + χ(2)(x, ω2) : E(ω1)E(ω1),

where χ(1) is the linear susceptibility tensor of the medium, χ(2) is the second-order nonlinear
susceptibility tensor of third rank, that means that, χ(2) : EE is a vector whose jth component
is

∑3
k,l=1 χ

(2)
jklEkEl, and E� is the complex conjugate of E. Then the Maxwell equations (1)-(2)

yield the following coupled system⎧⎪⎨
⎪⎩

[
∇× (∇×) − ω2

1d1
c2

]
E(ω1) = 4πω2

1ε
c2 χ(2)(ω1 = −ω1 + ω2) : E�(ω1)E(ω2),[

∇× (∇×) − ω2
2d2
c2

]
E(ω2) = 4πω2

2ε
c2 χ(2)(ω2 = ω1 + ω1) : E(ω1)E(ω1),

where di = ε(1 + 4πχ(1)(ωi)). The medium is said to be linear if D = ε(1 + χ(1)(ω))E, i.e.,
χ(2) vanishes. We assume that all the fields are invariant in the vertical direction. Then the
problem can be formulated in two dimensions. We shall also assume that the electric fields at
ω1 and ω2 are TE polarized, which means that

E(ωi) = e(ωi)u3, i = 1, 2,


