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Abstract

In this paper, we study numerical approximations of a recently proposed phase field
model for the vesicle membrane deformation governed by the variation of the elastic bend-
ing energy. To overcome the challenges of high order nonlinear differential systems and the
nonlinear constraints associated with the problem, we present the phase field bending elas-
ticity model in a nested saddle point formulation. A mixed finite element method is then
employed to compute the equilibrium configuration of a vesicle membrane with prescribed
volume and surface area. Coupling the approximation results for a related linearized prob-
lem and the general theory of Brezzi-Rappaz-Raviart, optimal order error estimates for the
finite element approximations of the phase field model are obtained. Numerical results are
provided to substantiate the derived estimates.
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1. Introduction

Recent biological studies have demonstrated that biological membranes have very rich struc-
tures and play an integral part in cell functions. The usual vesicle membranes are formed by
a bilayer of amphiphilic lipid molecules. The research on the structure, geometry, mechan-
ics and function properties of membranes is thus of great interests in the emerging subject of
lipidomics. The bending elasticity model for bilayer membranes, in particular, has been widely
used to study the mechanical properties of vesicle membranes.

According to Helfrich [13, 26, 34], the elastic bending energy is formulated in the form of a
surface integral on the membrane Γ:

E =

∫

Γ

{

a1 + a2(H − c0)
2 + a3G

}

ds, (1.1)

∗ Received March 1, 2006.
1)This research is supported in part by NSF DMS-0409297, NSF DMR-0205232, and by the National Basic

Research Program in China G19990328.



266 Q. DU AND L. ZHU

where a1 represents the surface tension, H = k1+k2

2 is the mean curvature of the membrane
surface, with k1 and k2 as the principle curvatures, and G = k1k2 is the Gaussian curvature.
The coefficient a2 is the bending rigidity and a3 the stretching rigidity, and c0 is the sponta-
neous curvature that describes the asymmetry effect of the membrane or its environment. The
equilibrium membrane configurations are the minimizers of the energy subject to given surface
area and volume constraints [17].

For brevity, we focus on the special case where the energy involves only the mean curvature
square term, that is,

Eelastic =

∫

Γ

H2ds , (1.2)

though much of our study here can be extended to work for (1.1) as well as other more general
cases.

A classical method to study free interface computationally is to employ a mesh that has
grid points on the interfaces, and deforms according to the motion of the boundary. Examples
include the boundary integral and boundary element methods [27, 35]. An alternative is to
employ fixed-grid methods that include the volume-of-fluid method, front-tracking method and
level-set method [6, 12, 32, 33, 36]. The applications of these methods to the bending elasticity
models can be found in, for example, [2, 29]. In recent works [17] and [15, 18, 19, 37], some phase
field models have been developed based on a general energetic variation framework involving the
above bending elastic energy. Extensions to coupled membrane and fluid interaction systems
can be found in [1, 16].

A phase function u = u(x), defined on the physical (computational) domain Ω containing
the vesicle Γ, is a key ingredient of phase field modeling [5, 7, 8, 24]. We visualize that the
level set {x : u(x) = 0} gives the membrane, while {x : u(x) > 0} represents the inside of the
membrane and {x : u(x) < 0} represents the outside of the membrane.

For the simplified energy (1.2), the corresponding phase field model is given by [17]

E(u) =

∫

Ω

1

2ǫ

(

ǫ∆u +
1

ǫ
u(1 − u2)

)2
dx . (1.3)

The surface area and volume constraints can be specified as

A(u) =

∫

Ω

u dx = α , (1.4)

B(u) =

∫

Ω

(

ǫ

2
|∇u|2 +

1

4ǫ
(u2 − 1)2

)

dx = β . (1.5)

Here, the parameter ǫ is a small regularization constant that determines the typical interfacial
width of the phase field function u. The equilibrium phase field model is then defined by
minimizing E subject to the constraints (1.4-1.5). The consistency of the the phase field model
energy (1.3) with the energy (1.2) in the sharp interface limit, that is, as ǫ → 0, has been
demonstrated in [14].

In terms of algorithmic development, discrete finite difference, finite element and spectral
approximations have all been developed [17, 19] for the phase field model presented above.
Extensive numerical simulations have been carried out and different energetic bifurcation phe-
nomena have been discussed in [17] and [15, 19], and they have demonstrated the effectiveness
of the phase field approach in the modeling of vesicle membrane deformations. Although finite
element analysis of phase field type models (largely for phase transition problems) have been
studied by various authors, see for example [7, 10, 20, 23, 24], the analysis for the phase field
bending elasticity model of vesicle membranes is still under development. In particular, it is
a challenge to carry out rigorous error analysis due to the nonlinear nature of the variational


