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Abstract

This paper deals with the relationship between asymptotic behavior of the numerical
solution and that of the true solution itself for fixed step-sizes. The numerical solution is
viewed as a dynamical system in which the step-size acts as a parameter. We present a
unified approach to look for bifurcations from the steady solutions into spurious solutions
as step-size varies.
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1. Introduction

It is well-known that a numerical method which is convergent in a finite interval does not
necessarily yield the same asymptotic behavior as the underlying differential equation. In many
circumstances, we are interested in the asymptotic behavior in the differential equations. The
asymptotic states of a dynamical system are captured in the ω− and α− limit sets which may
concern equilibria, periodic orbits, attractors, etc. It is desirable to design numerical schemes for
which these sets are close to the corresponding limit sets of the underlying differential equation,
and to understand and hence to avoid conditions under which spurious members of the limit
sets are introduced by the time discretization.

Runge-Kutta and linear multistep methods are commonly used to obtain a numerical solu-
tion of ordinary differential equations (ODEs). Dynamics of the numerical solution produced
by Runge-Kutta and linear multistep methods solving ODEs has been extensively studied (see,
for example, [3, 6, 7, 8, 9, 10, 12, 17]).

In this paper, we are concerned with the nonlinear delay differential equation with a constant
lag in the form

y′(t) = f(y(t), y(t− τ)), t > 0,
y(t) = φ(t), −τ ≤ t ≤ 0,

(1)

where y, f are real scalar functions and τ > 0 is a constant lag. The solution (if it exists) is
determined by a choice of initial function φ. The results on existence, uniqueness and continuous
dependence of solution of (1) can be found in the books by Hale and Lunel [4] and Driver [2].
We assume throughout that the initial function φ is continuous.
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Consider approximating the solution of (1) using a consistent numerical method with a fixed

step-size h such that h = τ
m
> 0, where m > k̃ is some positive integer and k̃ is a positive

integer depending upon the specific method. Let yn denote our approximation to y(tn), where
tn = nh. Typically the sequence yn is derived from a map of the form

F(yn−m, · · · , yn+k̃
;h) = 0, n = 0, 1, . . . , (2)

together with k̃ initial conditions. Thus (2) must be solved for y
n+k̃

given yn−m, · · · , yn+k̃−1.

By introducing a new vector Un = [yn−m, · · · , yn+k̃−1]
T ∈ R

k̃+m we may write (2) as a one-step
map of the form

H(Un, Un+1;h) = 0. (3)

Definition 1.1.

1. The numerical scheme (2) is regular of degree 1, denoted R[1], if every fixed point û ∈ R of
(2) satisfies f(û, û) = 0 of (1) for all h > 0 and all equations (1) with f ∈ C2. Otherwise
it is irregular of degree 1.

2. The numerical scheme (2) is regular of degree 2, denoted R[2], if (2) does not admit real
period two solution in n for all h > 0 and all equations (1) with f ∈ C2. Otherwise it is
irregular of degree 2.

The following two lemmas are used in the proofs of our main results. The first one concerns
the bifurcation of fixed points from simple eigenvalue, while the second concerns the bifurcation
of period 2 solutions in the map (3).

Lemma 1.2 [7] Let the function H(a, b;h) satisfy Cr(Rk̃+m×R
k̃+m,R) for some integer r ≥ 2.

Assume that the map (3) has a fixed point Û for all h > 0. Assume also that ∂H
∂a

(Û , Û ;h) +
∂H
∂b

(Û , Û ;h) is singular at h = hc and there exists a nonzero vector η ∈ R
k̃+m such that

Null(∂H
∂a

(Û , Û ;hc) + ∂H
∂b

(Û , Û ;hc)) = span{η}. If

d

dh

(
∂H
∂a

(U,U ;h) +
∂H
∂b

(U,U ;h)

)∣∣∣∣
U=Û, h=hc

η ∈| Range
(
∂H
∂a

(Û , Û ;hc) +
∂H
∂b

(Û , Û ;hc)

)
.

Then, for 0 < ǫ≪ 1, there exists a fixed point of (3) with the form

h(ǫ) = hc + O(|ǫ|),
Un(ǫ) = ǫη + O(|ǫ|2)

which is Cr−1 in ǫ.

Lemma 1.3 [7] Let the function H(a, b;h) satisfy Cr(Rk̃+m×R
k̃+m,R) for some integer r ≥ 2.

Assume that the map (3) has a fixed point Û for all h > 0. Assume also that there exists a

nonzero vector ϑ ∈ R
k̃+m such that Null

(
∂H
∂a

(Û , Û ;hc) − ∂H
∂b

(Û , Û ;hc)
)

= span{ϑ} and that

∂H
∂a

(Û , Û ;hc) + ∂H
∂b

(Û , Û ;hc) is invertible. If

d

dh

(
∂H
∂a

(U,U ;h) − ∂H
∂b

(U,U ;h)

)∣∣∣∣
U=Û , h=hc

ϑ ∈| Range
(
∂H
∂a

(Û , Û ;hc) −
∂H
∂b

(Û , Û ;hc)

)
.

Then, for 0 < ǫ≪ 1, there exists a period 2 solution of (3) with the form

h(ǫ) = hc + O(|ǫ|),
Un(ǫ) = Û + ǫ(−1)nϑ+ O(|ǫ|2)

which is Cr−1 in ǫ.


