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Abstract

To solve nonlinear complementarity problems (NCP), at each iteration, the classi-
cal proximal point algorithm solves a well-conditioned sub-NCP while the Logarithmic-
Quadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system).
This paper presents a practical LQP method-based prediction-correction method for NCP.
The predictor is obtained via solving the LQP system approximately under significantly
relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit
formula derived from the original LQP method. The implementations are very easy to be
carried out. Global convergence of the method is proved under the same mild assumptions
as the original LQP method. Finally, numerical results for traffic equilibrium problems are
provided to verify that the method is effective for some practical problems.
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1. Introduction

The nonlinear complementarity problem (NCP) is to determine a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0 and xT F (x) = 0, (1.1)

where F is a nonlinear mapping from Rn into itself. NCP has received a lot of attention due to
its various applications in operations research, economic equilibrium, engineering design, and
others, e.g., [7, 8].

A classical method for solving NCP is the Proximal Point Algorithm (PPA) proposed first by
Martinet [12] and then developed by many researchers, e.g., [6, 9, 15, 16]. For given xk ∈ Rn

+

and βk > 0, the new iterate xk+1 generated by PPA is the unique solution of the following
auxiliary NCP: Find x ∈ Rn such that

x ≥ 0, βkF (x) + (x− xk) ≥ 0 and xT (βkF (x) + (x− xk)) = 0. (1.2)

Recently, a number of articles have concentrated on the generalization of PPA by replacing
the linear term x − xk with some nonlinear functions r(x, xk). As a result, some “interior
point” proximal methods for variational inequality problems have been developed by introducing
entropic proximal terms arising from appropriately formulated Bregman functions [1, 4, 5, 6]
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and entropic ϕ-divergence [16]. For given xk ∈ Rn
++ := intRn

+ and βk > 0, the Logarithmic-
Quadratic Proximal (LQP) method presented by Auslender, et al. in [2] takes the unique
solution of the following auxiliary NCP as the new iterate:

x ≥ 0, βkF (x) +∇xD(x, xk) ≥ 0 and xT (βkF (x) +∇xD(x, xk)) = 0, (1.3)

where
∇xD(x, xk) = (x− xk) + µ(xk −X2

kx−1), (1.4)

µ is a parameter in (0, 1), Xk = diag(xk
1 , xk

2 , . . . , xk
n) and x−1 is an n-vector whose j-th element

is 1/xj . Note that the integral function of ∇xD(x, xk) satisfying D(xk, xk) = 0 is

D(x, xk) =

{

1
2‖x− xk‖2 + µ

∑n

j=1

(

(xk
j )2 log

xk
j

xj
+ xjx

k
j − (xk

j )2
)

, if x ∈ Rn

++,

+∞ otherwise.
(1.5)

Since D(x, xk) includes logarithmic and quadratic terms, the method is called Logarithmic-
Quadratic Proximal method. The first term of ∇xD(x, xk) is to avoid that the new iterate is
too far away from xk; and the second term is to guarantee that the new iterate lies in Rn

++.
Therefore, at the k-th iteration, solving NCP by the LQP method is equivalent to finding the
positive solution of the following system of nonlinear equations

βkF (x) + x− (1 − µ)xk − µX2
kx−1 = 0. (1.6)

Throughout this paper, we call (1.6) the LQP system of nonlinear equations (abbreviated as
LQP system). Generally speaking, solving the LQP system is much easier than solving the
auxiliary NCP (1.2). Thus the LQP method is attractive for solving NCP. In general, however,
it is not trivial to obtain the exact positive solution of the LQP system. An inexact LQP
method solving (1.6) approximately was also presented in [2].

In this paper, inspired by the LQP method, we present a prediction-correction method [11]
for NCP. Both the predictor and corrector are computed via an explicit formula derived from
(1.6) (For details, see (2.1) and (2.3)). Similar to the LQP method, all the iterative points
generated by the method lie in Rn

++ whenever the initial point does. Thus the method inherits
theoretical properties of the original LQP method. Based on these observations, we call the
method a LQP based interior prediction-correction method.

The rest of this paper is organized as follows. In Section 2, the new method is presented
and some remarks are also provided. In Section 3, we prove the contractive properties of the
proposed method. These properties play important roles in the convergence analysis. Conver-
gence of the new method is discussed in Section 4. In Section 5, some implementation details
of the proposed method are addressed. In addition, numerical results for problems in traffic
equilibrium are also reported. Finally, some conclusions are drawn in Section 6.

Throughout this paper we make the following standard assumptions:

A1. F (x) is continuous and monotone mappings with respect to Rn
+ , i.e.,

(x − x̃)T (F (x)− F (x̃)) ≥ 0, ∀x, x̃ ∈ Rn
+ . (1.7)

A2. The solution set of the NCP, denoted by X ∗, is nonempty.

2. The Proposed Method

At the k-th iteration, the LQP method solves the LQP system (1.6) exactly or approximately.
We now present a LQP based interior prediction-correction method for NCP.

Let µ, η ∈ (0, 1). For given xk > 0 and βk > 0, the new iterate xk+1 is generated by the
following steps:
Prediction step: Find an approximate solution x̃k of (1.6), called predictor, such that

0 ≈ βkF (x̃k) + x̃k − (1 − µ)xk − µX2
k(x̃k)−1 =: ξk, (2.1)


