THE GENERALIZED MAXIMUM ANGLE CONDITION FOR THE Q_1 ISOPARAMETRIC ELEMENT *1)

Jun Hu

(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China;

Graduate School of the Chinese Academy of Sciences, Beijing 100080, China)

Zhong-Ci Shi

(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

We consider the quadrilateral Q_1 isoparametric element and establish an optimal error estimate in H^1 norm for the interpolation operator under a weaker mesh condition which admits anisotropic quadrilaterals and allows the quadrilateral to become a regular triangle in the sense of maximum angle condition [5, 11].

Mathematics subject classification: 65N30.

Key words: Quadrilateral mesh, Q_1 isoparametric element, Generalized maximum angle condition

1. Introduction

We shall consider the quadrilateral Q_1 element and establish an estimate for the interpolation error under a new mesh condition. This condition is weaker than the precede conditions proposed in [12] and [2] among others. Moreover, it allows the quadrilateral to degenerate into an anisotropic however regular triangle in the sense of maximum angle condition [5, 11, 2]. First we will review some known results and introduce some notations.

Let K be a convex quadrilateral with vertices M_1 , M_2 , M_3 and M_4 . Let $\hat{K} = [-1, 1]^2$ be the reference element. There exists a bijection mapping $\mathcal{F}_K : \hat{K} \to K$ that $K = \mathcal{F}_K(\hat{K})$.

Let $\hat{\mathcal{Q}}_1(\hat{K})$ be the bilinear polynomial space, and let $\mathcal{Q}_1 = \mathcal{Q}_1(K)$ be the corresponding space defined on K. Let Π_1 denote the usual bilinear interpolation operator.

Our aim is to obtain the following interpolation error estimate

$$\|u - \Pi_1 u\|_{0,K} + h \|u - \Pi_1 u\|_{1,K} \le C_e h^2 \|u\|_{2,K}$$
(1.1)

under the condition we shall proposed, where h is the diameter of K. There are several conditions in the literature for (1.1) to hold, here we only review, among others, the J condition and RDP condition, proposed by Jamet [12] and Acosta and Duran [2] respectively, which can be expressed as follows

Definition 1.1 K is regular with constant $\sigma > 0$, or shortly $J(\sigma)$, if it holds that

 $h/\rho \leq \sigma$,

where h denotes the diameter of K and ρ the maximum of the diameters of all circles contained in K.

^{*} Received September 4, 2004.

¹⁾ This research was supported by the Special Funds for Major State Basic Research Project.

Definition 1.2 K is regular with constant $N \in R$ and $0 < \psi < \pi$, or shortly $RDP(\psi, N)$, if we can divide K into two triangles along one of its diagonals, which will always be called D_1 , the other is D_2 in such a way that $|D_2| / |D_1| \le N$ and both triangles satisfy the maximum angle condition, i.e., each interior angle of these two triangles is bounded from above by ψ .

For other conditions, we referr to references [7, 8, 9, 14] and [3, 17]. A comprehensive review of quadrilateral meshes can be found in the introduction of [14], there the equivalency and the relation of some shape mesh conditions is also proved. The review of degenerate quadrilateral mesh conditions can also be found in [2].

Under the $J(\sigma)$ condition, it was shown in [12] that the constant C_e in (1.1) depends only on σ . Under the constraint $RDP(\psi, N)$, Acosta and his colleague prove that C_e depends only on ψ and N. $RDP(\psi, N)$ condition is so far the weakest mesh condition for (1.1) to hold. However, due to the constraint $|D_2| / |D_1| \le N$, it does not allow a quadrilateral to become an anisotropic however regular triangle in the sense of maximum angle condition. As we will see below the constraint $|D_2| / |D_1| \le N$ can be removed.

We introduce some notations and concepts. Let d_1 denote the longer diagonal of K, d_2 the shorter one. As illustrated in Fig.1, we denote by T_1 and T_2 the two triangles obtained by subdividing K along d_1 , and t_1 and t_2 are the two triangles obtained by decomposing K along d_2 .

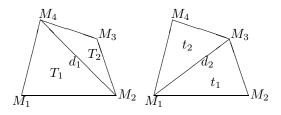


Fig.1. Quadrilateral K

We now give the definition of the maximum angle condition.

Definition 1.3 [5, 11, 2] We say a triangle T(resp. a quadrilateral K) satisfies the maximum angle condition with a constant ψ , or shortly $MAC(\psi)$, if the angles of T(resp. K) are less than or equal to ψ .

In the sequel, the regularity of triangles is referred to as in this maximum angle sense. Our mesh condition can be stated as

Definition 1.4 We say a convex quadrilateral K satisfies the generalized maximum angle condition, or shortly $GMAC(\psi)$, if there exists a positive constant $\psi < \pi$ such that, among T_i , t_i , i = 1, 2, there are at least three regular triangles in the sense of $MAC(\psi)$.

Let us notice that the constraint $|D_2| / |D_1| \le N$ in the $RDP(N, \psi)$ condition is dropped in this condition. We shall prove the following result

Theorem 1.1 Let K be a convex quadrilateral satisfying $GMAC(\psi)$ with the constant $0 < \psi < \pi$ and $u \in H^2(K)$, then there exists a constant C_{err} only depending on ψ such that

$$u - \prod_{1} u \mid_{m,K} \leq C_{err}(\psi) h^{2-m} \mid u \mid_{2,K}, m = 0, 1$$
(1.2)