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Abstract

This paper provides a simplified derivation for error estimates of the TRUNC plate
element. The error analysis for the problem with mixed boundary conditions is also dis-
cussed.
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1. Introduction

The TRUNC element is very effective for the numerical solution of Kirchhoff plates. Appli-
cations to some sample problems showed that it converged rapidly [1, 2, 3]. Shi first established
the error estimates in [9], and the derivation is rather technical.

This paper intends to revisit error analysis of the element. We will give a simple but very
useful identity for the approximate solution. From this identity, we obtain a desired estimate
for the term E1(u

∗, w̄h) in [9] in a simplified way, which is essential in producing optimal error
estimates. We also discuss error analysis of the method for corresponding problems with mixed
boundary conditions. It deserves to point out that our derivation is different from that in [14],
where the deduction of (3.18) is not rigorous (see Remark 1.4.4.7 in [6, p.32]).

2. Error Estimates for Plate Bending Problem with Clamped

Conditions

Given a polygonal domain Ω, consider the following plate bending problem with clamped
conditions [5]:

{

−Mαβ,αβ(u∗) = ∆2u∗ = f in Ω,
u∗ = ∂nu∗ = 0 on ∂Ω,

(2.1)

where

Mαβ(u) := (1 − σ)Kαβ(u) + σKµµ(u), Kαβ(u) := −∂αβu, 1 ≤ α, µ, β ≤ 2,

with σ ∈ (0, 0.5) being the Poisson ratio of the plate and n the unit outward normal to ∂Ω.
Throughout this paper we use Einstein’s convention for summation, and always assume that
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u∗ ∈ H3(Ω) ∩ H2
0 (Ω) in this section. The variational formulation of (2.1) is to find u∗ ∈ V =

H2
0 (Ω) such that

a(u∗, v) = f(v) =

∫

Ω

fvdx, ∀v ∈ V,

where

a(u, v) :=

∫

Ω

Mαβ(u)Kαβ(v)dx

=

∫

Ω

[∆u∆v + (1 − σ)(2∂12u∂12v − ∂11u∂22v − ∂22u∂11v)]dx.

We next give some useful identities [8] for later uses. Given a polygon G, let v be a function
in H3(G) and w a function in H2(G). Then

aG(v, w) :=

∫

G

Mαβ(v)Kαβ(w)dx

=

∫

G

Qα(v)∂αwdx −
∫

∂G

{Mnn(v)∂nw + Mnτ (v)∂τ w}ds, (2.2)

where

Mnn(v) := Mαβ(v)nαnβ, Mnτ (v) := Mαβ(v)nατβ , Qα(v) := ∂βMαβ(v),

with n = (n1, n2) and τ = (τ1, τ2) being the unit outward normal and tangent vector to ∂G
such that (n, τ) forms a right-hand system. Moreover, we have by (2.1) that

∫

G

Qα(u)∂αvdx − f(v) =

∫

∂G

Qn(u)vds, ∀v ∈ H1(G), (2.3)

where Qn(u) := Qα(u)nα ∈ H−1/2(∂G). Since the tangent derivative is only the derivative
with respect to the arc length parameter s in the boundary ∂G, we also write ∂s for ∂τ in what
follows.

We divide the region of interest Ω into a regular family of triangular elements K with the
diameter hK ≤ h, Ω̄ = ∪K∈Th

K̄, and define on each triangle K the shape function to be an
incomplete cubic polynomial,

vh =a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1

+ a7(λ
2
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2
2) + a8(λ

2
2λ3 − λ2λ

2
3) + a9(λ

2
3λ1 − λ3λ

2
1), (2.4)

with the nodal parameters being the function values and the values of two first order derivatives
at vertices of the triangle K, i.e., vh(pi), ∂1vh(pi), ∂2vh(pi), 1 ≤ i ≤ 3, where {pi}3

i=1 denote
the three vertices of K. We then obtain the usual Zienkiewicz element space Vh related to V .

For each vh ∈ Vh, we split the function into two parts,

vh := v̄h + v′h, (2.5)

where

v̄h|K := a1λ1 + a2λ2 + a3λ3 + a4λ1λ2 + a5λ2λ3 + a6λ3λ1 (2.6)

and

v′h|K := a7(λ
2
1λ2 − λ1λ

2
2) + a8(λ

2
2λ3 − λ2λ

2
3) + a9(λ

2
3λ1 − λ3λ

2
1). (2.7)

Thus, we define a bilinear form on Vh by

bh(uh, vh) := ah(ūh, v̄h) + ah(u′
h, v′h), ∀uh, vh ∈ Vh,


