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Abstract

This paper concerns the solution of the NP-hard max-bisection problems. NCP func-
tions are employed to convert max-bisection problems into continuous nonlinear program-
ming problems. Solving the resulting continuous nonlinear programming problem generates
a solution that gives an upper bound on the optimal value of the max-bisection problem.
From the solution, the greedy strategy is used to generate a satisfactory approximate so-
lution of the max-bisection problem. A feasible direction method without line searches is
proposed to solve the resulting continuous nonlinear programming, and the convergence
of the algorithm to KKT point of the resulting problem is proved. Numerical experiments
and comparisons on well-known test problems, and on randomly generated test problems
show that the proposed method is robust, and very efficient.
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1. Introduction

This paper concerns the solution of the max-bisection problem for a given undirected graph
G = (V, E) with V = {1, 2, · · · , n} the node set, E the edge set, and n is even. Let W =
(wij)n×n be the symmetric weight matrix with wij > 0 if (i, j) ∈ E and wij = 0 if (i, j) 6∈ E. The
max-bisection problem is to partition the node set V into two subsets S and V \S having equal
cardinality such that the sum

∑

i∈S, j∈V \S wij is maximized. The problem can be formulated
by assigning each node a binary variable xj

(MB) :











MB(S) = Max 1
4

∑

i,j

wij(1 − xixj)

s.t. eT x = 0,
x2

j = 1, j = 1, · · · , n,

where e ∈ Rn is the column vector of all ones. The constraint x2
j = 1 implies that xj takes

either 1 or −1, so that we will have either S = {j|xj = 1} or S = {j|xj = −1}. The constraint
eT x = 0 ensures |S| = |V \ S|.

The max-bisection problem is NP-hard [1], and has wide applications in real world. Ap-
proximation algorithms are available, and polynomial time approximation schemes exist for
the problem over dense graphs [3] and over planar graphs [4]. Frieze and Jerrum[6] extended
Goemans-Willamson approach [5] to max-bisection problems, giving a randomized 0.651 ap-
proximation algorithm for the maximum weight bisection problem. Ye [7] improved the per-
formance ratio of the algorithm to 0.6993 by combining the Frieze-Jerrum approach with some
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rotation argument that is applied to the optimal solution of the semi-definite relaxation of
the problem. Halperin and Zwith [8] further improved the approximation ratio to 0.7016 by
strengthening to SDP relaxation with the triangle inequalities. All these algorithms are based
on the semi-definite relaxation of problem MB

(SDP ) :















SDP (S) = Max L · X,
s.t. Diag(X) = e,

eeT · X = 0,
X � 0,

here L = 1
4 (Diag(We)−W ), X ∈ Rn×n is a symmetric matrix, L ·X = trace(LX) is the matrix

inner product, and X � 0 means X positive semi-definite. It is clear that (SDP) is a relaxation
of (MB), and since X = xxT is feasible for (SDP) for any feasible solution x of (MB), we have
SDP (S) ≥ MB(S).

In this paper, we will propose a continuous model for the solution of max-bisection prob-
lems, and a feasible direction algorithm without line search to solve the resulting continuous
model. Unlike the available relaxation methods for max-bisection problems, NCP functions
are employed to convert the max-bisection problem to a continuous nonlinear programming,
and then the resulting nonlinear programming problem is solved using the feasible direction
method without line search. The convergence property of the proposed algorithm is studied,
and numerical experiments and comparisons on some well-known test problems and on some
randomly generated problems are made to show the efficiency of the proposed algorithm on
both the CPU times and solutions.

The rest of paper is organized as follows. In section 2 we convert the max-bisection into a
continuous nonlinear programming problem by using NCP functions. The relationship between
the solutions of the max-bisection problem and the resulting nonlinear programming problem
is analyzed. The feasible direction method without line searches are presented in section 3.
The convergence of the algorithm to KKT point of the resulting nonlinear programming is
proved. Numerical results and comparisons are reported in section 4, and it is observed that
the algorithm is effective and efficient on both the CPU times and the solutions. Section 5 gives
the conclusions.

2. The Continuous Model of Max-Bisection Problem

In this section we formulate the max-bisection problem into a continuous nonlinear pro-
gramming by using NCP functions, and analyze the relationship between the solutions of the
max-bisection and the resulting continuous nonlinear programming.

The max-bisection problem can be rearranged as

(MB) :







MB(S) = Max xT LX
s.t. eT x = 0,
x2

j = 1, j = 1, · · · , n,

where L = 1
4 (Diag(We) − W ). If wij ≥ 0 for all i, j, then L is a Laplace matrix, and hence,

positive semi-definite (L � 0) [9]. Without loss of generality, we will assume, in the rest of the
paper, that L is positive definite and Lii > 0, i = 1, · · · , n. because of no any effects on optimal
solutions.

Adding constraints −1 ≤ xj ≤ 1, j = 1, · · · , n to problem (MB) gives no effects on its


