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Abstract

In transport theory, the convergence of the inner iteration scheme to the spherical
neutron transport equation has been an open problem. In this paper, the inner iteration
for a positive step function scheme is considered and its convergence in spherical geometry
is proved.
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1. Introduction

In 1968, Carlson and Lathrop [1, p. 261] pointed out, there were some unsolved problems in
neutron transport theory. One of them is the convergence of inner and outer iteration process.
Perhaps investigations of these problems lead to procedures for accelerating convergence. Since
then considerable progress has been made in convergence of inner iterations in slab geometry.
For example, Menon and Sahni [2] estimated the spectral radius of the iteration matrix and
proved the convergence theorem under the assumption of “non-regenerative” in slab geometry.
Nelson [3] proved that the similar conclusion under the hypothesis of “weak non-multiplying”.
Recently Yuan et al[4] proved the convergence under a weaker condition on known data and
more general boundary conditions.

Due to the appearance of the angular derivative in curvilinear geometry, the formalism of
such inner iterations scheme are more complex and there is not any known convergent result by
now. In this paper, we will establish the convergence of inner iterations to the spherical neutron
transport equation. The means employed here is the Perron-Frobenius theory for non-negative
matrix, but the argument method of Nelson’s proof [3] is improved, just like that in [4] so as
to handle complicated process. Although the result is concluded for a positive step scheme, it
can be extended to some other positive schemes.

Consider the following neutron transport equation
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∫ 1
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ψ(r, µ′)dµ′ + f(r), (1)

where r ∈ [0, R], µ ∈ [−1, 1], ψ is angular flux with subject to vacuum boundary condition

ψ(R, µ) = 0, µ < 0. (2)

Here σ(r) ≥ c(r) ≥ 0 are the total and the scattering cross section respectively, f(r) is the
non-negative external source.
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Eq.(1) is usually expressed the following conservative form too,
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Consider a spatial and angular net with mesh points 0 = r 1

2

< r 3

2

< · · · < rK+ 1

2

= R;

−1 = µ 1

2

< µ 3

2

< · · · < µN+ 1

2

= 1, where N is an even number. Let Ck = [rk− 1

2

, rk+ 1

2

] for

k = 1, 2, · · · ,K. Suppose that in the interior of each Ck, σ(r) and c(r) are constants σk and ck
respectively, then the standard inner iteration schemes are as follows [5, pp. 230 or 9, pp. 141]:
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Boundary conditions are
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The symmetry conditions at the center of the sphere are
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In order to complete the differencing procedure, we need two auxiliary relationships
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where 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, k = 1, · · · ,K;m = 1, · · · , N .
The starting direction equation (µ = −1) is given by
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The boundary condition for the starting equation (8) is

ψ
(n+1)

K+ 1

2
, 1

2

= 0. (10)


