Journal of Computational Mathematics, Vol.23, No.3, 2005, 305–320.

ON THE MINIMAL NONNEGATIVE SOLUTION OF NONSYMMETRIC ALGEBRAIC RICCATI EQUATION *1)

Xiao-xia Guo Zhong-zhi Bai

(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

We study perturbation bound and structured condition number about the minimal nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp perturbation bound and an accurate condition number. By using the matrix sign function method we present a new method for finding the minimal nonnegative solution of this algebraic Riccati equation. Based on this new method, we show how to compute the desired M-matrix solution of the quadratic matrix equation $X^2 - EX - F = 0$ by connecting it with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is an M-matrix.

Mathematics subject classification: 65F10, 65F15, 65N30. Key words: Nonsymmetric algebraic Riccati equation, Minimal nonnegative solution, Matrix sign function, Quadratic matrix equation.

1. Introduction

In this paper, we will mainly study the nonsymmetric algebraic Riccati equation (ARE)

$$XCX - XD - AX + B = 0, (1)$$

where A, B, C, D are given real matrices of sizes $m \times m$, $m \times n$, $n \times m$ and $n \times n$, respectively. To this end, let us define two $(m + n) \times (m + n)$ matrices H and K as follows:

$$H = \begin{pmatrix} D & C \\ -B & -A \end{pmatrix}, \qquad K = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix}.$$
 (2)

We will focus on the exploration of the minimal nonnegative solution of the ARE(1) by making use of the invariant subspace of the matrix H when K is a nonsingular M-matrix.

We have noticed that sensitivity analysis about other types of algebraic Riccati equations were studied in depth in [17, 18, 10, 6], and direct methods about the linear matrix equations, the special cases of the algebraic Riccati equations, were presented in detail in [8, 9].

This paper is organized as follows. After reviewing some basic notations and results associated with the nonsymmetric ARE(1) in section 2, we give a perturbation bound for the minimal nonnegative solution of the ARE(1) in section 3. A structured condition number is derived mathematically and verified numerically in section 4. Then, we present a matrix sign function method for finding the minimal nonnegative solution in section 5; this method can also be used to find the desired *M*-matrix solution of the quadratic matrix equation $X^2 - EX - F = 0$, with *E* a diagonal matrix and *F* an *M*-matrix. Finally, in section 6 we use some numerical examples to illustrate the correctness of our theory and the feasibility of our methods.

^{*} Received December 10, 2003; final revised September 6, 2003.

¹⁾ Subsidized by the Special Funds For Major State Basic Research Projects G1999032803 and the National Natural Science Foundation No. 10471146, China.

2. Basic Notations and Results

Given two matrices $A = (a_{ij}), B = (b_{ij}) \in \mathbb{R}^{m \times n}$, we write $A \ge B$ (A > B) if $a_{ij} \ge b_{ij}$ $(a_{ij} > b_{ij})$ hold for all *i* and *j*, and we call the matrix *A* positive (nonnegative), if A > 0 $(A \ge 0)$.

Let $A \in \mathbb{R}^{n \times n}$. It is called a Z-matrix if all of its off-diagonal elements are nonpositive. Clearly, a Z-matrix $A \in \mathbb{R}^{n \times n}$ can be represented as A = sI - B, with $B \ge 0$. In particular, when $s > \rho(B)$, the spectral radius of the matrix B, A turns to a nonsingular M-matrix, and when $s = \rho(B)$, it turns to a singular M-matrix. We use $\lambda(A)$ to denote the spectrum of the matrix A, $\sigma_{\min}(A)$ the smallest singular value of A, and $\mathcal{R}(A)$ the range space spanned by the columns of the matrix A.

The open left (right) half plane is denoted by $\mathbb{C}_{<}$ ($\mathbb{C}_{>}$), and the closed left (right) half plane is denoted by \mathbb{C}_{\leq} (\mathbb{C}_{\geq}), respectively. In addition, we use $\|\cdot\|$ to denote any consistent matrix norm on $\mathbb{C}^{n \times n}$ unless it is claimed explicitly. In particular, we use $\|\cdot\|_2$ and $\|\cdot\|_F$ to denote the spectral and the Frobenius norms of a matrix, respectively.

We recall that the separation of two matrices $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times m}$ can be defined as follows. See [14].

$$\operatorname{sep}(B,C) := \inf\{\|PB - CP\| \mid B \in \mathbb{R}^{n \times n}, \ C \in \mathbb{R}^{m \times m} \text{ and } P \in \mathbb{R}^{m \times n}, \ \text{with } \|P\| = 1\}.$$
(3)

When the norm in (3) is specified to be the Frobenius norm, we denote the separation sep(B, C) by $sep_F(B, C)$.

The following properties about an M-matrix can be found in [1].

Lemma 2.1. [1] Given a Z-matrix $A \in \mathbb{R}^{n \times n}$. Then the following statements are equivalent:

- (a) A is a nonsingular M-matrix;
- (b) $A^{-1} \ge 0;$
- (c) Av > 0 holds for some vector v > 0;
- (d) $\lambda(A) \subset \mathbb{C}_{>}$.

For the nonsymmetric ARE(1), from [2, 3] we know that the following results hold.

Lemma 2.2. If the matrix K defined in (2) is a nonsingular M-matrix, then the ARE(1) has a minimal nonnegative solution S that satisfies that both matrices $D_C := D - CS$ and $A_C := A - SC$ are nonsingular M-matrices.

Lemma 2.3. If the matrix K defined in (2) is a nonsingular M-matrix, then the matrix H defined in (2) has n eigenvalues in $\mathbb{C}_{>}$ and m eigenvalues in $\mathbb{C}_{<}$.

Lemma 2.4. If the matrix K defined in (2) is a nonsingular M-matrix and S is a minimal nonnegative solution of the ARE(1), then

$$\begin{pmatrix} I & 0 \\ S & I \end{pmatrix} \begin{pmatrix} D & C \\ -B & -A \end{pmatrix} \begin{pmatrix} I & 0 \\ -S & I \end{pmatrix} = \begin{pmatrix} D - CS & C \\ 0 & -(A - SC) \end{pmatrix}.$$

It then follows that the column space of the matrix

 $\left(\begin{array}{c}I\\-S\end{array}\right)$

is the unique invariant subspace of the matrix H associated with its n eigenvalues in $\mathbb{C}_{>}$.