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Abstract

We study perturbation bound and structured condition number about the minimal
nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp per-
turbation bound and an accurate condition number. By using the matrix sign function
method we present a new method for finding the minimal nonnegative solution of this al-
gebraic Riccati equation. Based on this new method, we show how to compute the desired
M -matrix solution of the quadratic matrix equation X2

− EX − F = 0 by connecting it
with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is
an M -matrix.
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1. Introduction

In this paper, we will mainly study the nonsymmetric algebraic Riccati equation (ARE)

XCX − XD − AX + B = 0, (1)

where A, B, C, D are given real matrices of sizes m×m, m×n, n×m and n×n, respectively.
To this end, let us define two (m + n) × (m + n) matrices H and K as follows:

H =

(
D C

−B −A

)
, K =

(
D −C

−B A

)
. (2)

We will focus on the exploration of the minimal nonnegative solution of the ARE(1) by making
use of the invariant subspace of the matrix H when K is a nonsingular M -matrix.

We have noticed that sensitivity analysis about other types of algebraic Riccati equations
were studied in depth in [17, 18, 10, 6], and direct methods about the linear matrix equations,
the special cases of the algebraic Riccati equations, were presented in detail in [8, 9].

This paper is organized as follows. After reviewing some basic notations and results as-
sociated with the nonsymmetric ARE(1) in section 2, we give a perturbation bound for the
minimal nonnegative solution of the ARE(1) in section 3. A structured condition number is
derived mathematically and verified numerically in section 4. Then, we present a matrix sign
function method for finding the minimal nonnegative solution in section 5; this method can also
be used to find the desired M -matrix solution of the quadratic matrix equation X2−EX−F = 0,
with E a diagonal matrix and F an M -matrix. Finally, in section 6 we use some numerical
examples to illustrate the correctness of our theory and the feasibility of our methods.
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2. Basic Notations and Results

Given two matrices A = (aij), B = (bij) ∈ R
m×n, we write A ≥ B (A > B) if aij ≥ bij

(aij > bij) hold for all i and j, and we call the matrix A positive (nonnegative), if A > 0
(A ≥ 0).

Let A ∈ R
n×n. It is called a Z-matrix if all of its off-diagonal elements are nonpositive.

Clearly, a Z-matrix A ∈ R
n×n can be represented as A = sI − B, with B ≥ 0. In particular,

when s > ρ(B), the spectral radius of the matrix B, A turns to a nonsingular M -matrix, and
when s = ρ(B), it turns to a singular M -matrix. We use λ(A) to denote the spectrum of the
matrix A, σmin(A) the smallest singular value of A, and R(A) the range space spanned by the
columns of the matrix A.

The open left (right) half plane is denoted by C< (C>), and the closed left (right) half plane
is denoted by C≤ (C≥), respectively. In addition, we use ‖ · ‖ to denote any consistent matrix
norm on C

n×n unless it is claimed explicitly. In particular, we use ‖ · ‖2 and ‖ · ‖F to denote
the spectral and the Frobenius norms of a matrix, respectively.

We recall that the separation of two matrices B ∈ R
n×n and C ∈ R

m×m can be defined as
follows. See [14].

sep(B, C) := inf{‖PB − CP‖ | B ∈ R
n×n, C ∈ R

m×m and P ∈ R
m×n, with ‖P‖ = 1}. (3)

When the norm in (3) is specified to be the Frobenius norm, we denote the separation sep(B, C)
by sepF (B, C).

The following properties about an M -matrix can be found in [1].

Lemma 2.1. [1] Given a Z-matrix A ∈ R
n×n. Then the following statements are equivalent:

(a) A is a nonsingular M -matrix;

(b) A−1 ≥ 0;

(c) Av > 0 holds for some vector v > 0;

(d) λ(A) ⊂ C>.

For the nonsymmetric ARE(1), from [2, 3] we know that the following results hold.

Lemma 2.2. If the matrix K defined in (2) is a nonsingular M -matrix, then the ARE(1)
has a minimal nonnegative solution S that satisfies that both matrices DC := D − CS and
AC := A − SC are nonsingular M -matrices.

Lemma 2.3. If the matrix K defined in (2) is a nonsingular M -matrix, then the matrix H

defined in (2) has n eigenvalues in C> and m eigenvalues in C<.

Lemma 2.4. If the matrix K defined in (2) is a nonsingular M-matrix and S is a minimal
nonnegative solution of the ARE(1), then

(
I 0
S I

)(
D C

−B −A

)(
I 0
−S I

)
=

(
D − CS C

0 −(A − SC)

)
.

It then follows that the column space of the matrix

(
I

−S

)

is the unique invariant subspace of the matrix H associated with its n eigenvalues in C>.


