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Abstract

We obtain the optimal order of high-dimensional integration complexity in the quantum
computation model in anisotropic Sobolev classes W r

∞
([0, 1]d) and Hölder Nikolskii classes

Hr

∞
([0, 1]d). It is proved that for these classes of functions there is a speed-up of quantum

algorithms over deterministic classical algorithms due to factor n−1 and over randomized
classical methods due to factor n−1/2. Moreover, we give an estimation for optimal query
complexity in the class HΛ

∞
(D) whose smoothness index is the boundary of some complete

set in Z
d
+.
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1. Introduction

Quantum computers, whose basic operators are based on the theory of quantum mechanics,
equip with the amazing computational speed which is much faster than that of classical comput-
ers. The questions arisen by the powerful conceptual machines are studied in computer science
but seldom done in numerical analysis, see [4, 24, 14]. The pioneering work about the quantum
complexity for numerical problem was done by Novak, [19]. After that, a series of papers about
summation of sequences and multivariate integration of functions by Novak and Heinrich were
published, see [12, 10, 11]. In [25], Traub initially discussed the quantum complexity of path
integration.

In this paper, we continue the study of the problem of high-dimensional integration. Usually,
the need to understand the complexity of the problems in the deterministic and randomized
settings will help to judge the possible gains by quantum computation. In information-based
complexity theory, the complexity of integration problems is well known for classical function
classes. Recently, Fang and Ye [7] obtained the exact order of integration problem for anisotropic
Sobolev classes and Holder-Nikolskii classes in the classical deterministic and randomized set-
tings. Our goal is to study the complexity in the quantum computation model. Compared
to the known results of complexities for some anisotropic classes, we hope that there exists
an essential speed-ups under quantum computation similar to what happens for the classical
Sobolev classes.
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We obtain the optimal order of high-dimensional integration complexity in the quantum
computation model for anisotropic Sobolev classes W r

∞([0, 1]d) and Hölder Nikolskii classes
Hr

∞([0, 1]d). Our method is based on the discrete skill which is used in [11]. But we develop
some new skills to overcome the difficulties of anisotropy and weaker smoothness which arise
from the the study of our classes. For more details on the quantum setting for numerical
problems we refer to [10]. For general background on quantum computing we refer to the
surveys [8, 21] and to the monographs [16, 22].

We organize this paper as follows. In section two, we review the quantum computation
model. In section three, the integration problems in anisotropic classes are briefly introduced.
Moreover, we present the main results of our paper. Section four reviews some known results
which is used in the proof of theorems. Finally, the proof of the new results are presented in
section five.

2. Quantum Computation Model

In this section we introduce the quantum computation model. We start with adopting some
notations following [11, 19]. For nonempty sets Ω and K we denote the set of all function from
Ω to K by F(Ω, K). Let G be a normed space with scalar field K, which is either R or C, and
let S be any mapping from F to G, where F ⊂ F(Ω, R). we want to approximate S(f) for
f ∈ F by quantum computations. Denote

Z[0, N) := {0, . . . , N − 1}

for N ∈ N. Let Hm be m-fold tensor product of H1, two-dimensional Hilbert space over C,
and let {e0, e1} be two orthonormal basis of H1. An orthonormal basis of Hm, denoted by Cm,
consist of the vectors |l >:= ei0 ⊗ . . . ⊗ eim

(l ∈ Z[0, 2m−1)), where ⊗ is the tensor product,

ij ∈ {0, 1} and l =
∑2m−1

j=0 ij2
m−1−j . Let U(Hm) stand for the set of unitary operator on Hm.

Two mappings are defined respectively by

τ : Z → Ω and β : K → Z[0, 2m
′′

).

where for m, m′, m
′′

∈ N, m′+m
′′

≤ m and Z is the nonempty subset of Z[0, 2m′

). A quantum
query on F is give by a tuple

Q = (m, m′, m
′′

, Z, τ, β),

and the number of quits m(Q) := m. We define the unitary operator Qf for a given query Q
by setting for each f ∈ F

Qf |i > |x > |y >:=

{

|i > |x ⊕ β(f(τ(i))) > |y > if i ∈ Z,
|i > |x > |y > otherwise,

where set |i > |x > |y >∈ Cm := Cm′ ⊗ Cm′′ ⊗ Cm−m′−m′′ and denote addition modulo 2m
′′

by
⊕.

Let tuple A = (Q, (Uj)
n
j=0) denote a quantum algorithm on F with no measurement, where

Q is a quantum query on F , n ∈ N0 (N = N
⋃

{0}) and Uj ∈ U(Hm), with m = m(Q). For
each f ∈ F , we have Af ∈ U(Hm) with the following form

Af = UnQfUn−1 . . . U1QfU0.


